
A Configurable TLB Hierarchy for the RISC-V
Architecture

Nikolaos Charalampos Papadopoulos, Vasileios Karakostas, Konstantinos Nikas,
Nectarios Koziris, Dionisios N. Pnevmatikatos

School of ECE, National Technical University of Athens
{ncpapad, vkarakos, knikas, nkozyris, pnevmati}@cslab.ece.ntua.gr

Abstract—The Rocket Chip Generator uses a collection of
parameterized processor components to produce RISC-V-based
SoCs. It is a powerful tool that can produce a wide variety
of processor designs ranging from tiny embedded processors
to complex multi-core systems. In this paper we extend the
features of the Memory Management Unit of the Rocket Chip
Generator and specifically the TLB Hierarchy. TLBs are essential
in terms of performance because they mitigate the overhead of
frequent Page Table Walks, but may harm the critical path
of the processor due to their size and/or associativity. In the
original Rocket Chip implementation the L1 Data/Instruction
TLB is fully-associative and the shared L2 TLB is direct-
mapped. We lift these restrictions and design and implement
configurable, set-associative L1 and L2 TLB templates that can
create any organization from direct-mapped to fully-associative to
achieve the desired ratio of performance and resource utilization,
especially for larger TLBs. We present the area for different
configurations and evaluate the overall performance of our design
using the SPEC2006 benchmark suite on the Xilinx ZCU102
FPGA. Our design is intended both for ASIC implementation
and for FPGA-friendly soft processors. As FPGAs continue to
increase in size, it becomes increasingly attainable and desirable
to use configurable high-performance soft processors that can run
full-fledged operating systems, especially for applications with
large memory footprints.

Index Terms—RISC-V, Rocket Chip Generator, Memory Man-
agement Unit, TLB Hierarchy, FPGA

I. INTRODUCTION

FPGA designs often incorporate a number of general pur-

pose soft processors. As the range of FPGA applications

broadens and evolves, the performance demand from soft-

processors will likely increase [1]–[7]. In addition, modern

FPGA fabrics are growing in size thanks to technology im-

provements, and become capable of accommodating more

complex and larger soft-processor designs. Hence, as FPGAs

continue to increase in size, it becomes increasingly important

to use configurable high-performance soft processors that can

run full-fledged operating systems and that are tailored to the

needs of the target applications.

The Rocket Chip Generator (RCG) [8] uses a collection

of parameterizable processor components to produce RISC-

V-based SoCs. While the RCG was initially intended for

ASIC implementation, its adaptation by the community and

academia has lead to prototypes in multiple FPGA platforms

[9]–[11]. The RCG supports fully-fledged Unix-like operating

systems, RISC-V extensions, and accelerators.

The RCG targets a wide range of application domains,

ranging from embedded up to high-end systems. To support

these diverse application domains, most components have been

implemented as configurable templates in the Chisel [12] high-

level hardware description language (HCL). However, some

of the Rocket Chip Generator components are still missing

support for configurability. In this paper we particularly focus

on the Memory Management Unit (MMU) and specifically on

the Translation Lookaside Buffer (TLB) hierarchy that lack

such configurability support. TLBs are essential in terms of

performance because they mitigate the overhead of frequent

page table walks, but may harm the critical path of the

processor due to their size and/or associativity.

In the original Rocket Chip implementation, only the num-

ber of TLB entries is configurable; the L1 Instruction and

Data TLBs can only be fully-associative and the shared L2

TLB direct-mapped. However, that approach is not optimal

for applications with large memory footprints that require

larger TLB reach with many entries because: (i) increasing the

number of the fully-associative L1 TLB significantly increases

the critical path of the processor and can impact the operating

frequency of the entire design, and (ii) a direct-mapped L2

TLB can experience many conflict misses, leaving significant

room for application performance improvement with the use

of increased associativity. Furthermore, for FPGA implementa-

tions high-associativity content-addressable memories (CAMs)

may lead to poor resource usage and lower frequency. Lower-

ing the associativity while keeping a large number of entries

alleviates this issue without sacrificing performance. Hence,

the lack of configurability in the TLB may limit the efficient

applicability of RCG soft processors for applications with

large memory footprints that stress the TLB hierarchy.

In this paper we lift these restrictions and design and imple-

ment configurable, set-associative L1 and L2 TLB templates

that can create any organization from direct-mapped to fully-

associative to achieve the desired ratio of performance and re-

source utilization, especially for larger TLBs. We also modify

existing replacement policies to be compatible with our design,

offering flexibility for performance and resource usage trade-

offs. We use different L1/L2 TLB configuration scenarios to

evaluate our design with benchmarks from SPEC2006int [13].

We show that performance improves by up to 15.4% for the

largest evaluated TLB configuration, with minimal impact in

resource usage.

85

2020 30th International Conference on Field-Programmable Logic and Applications (FPL)

978-1-7281-9902-3/20/$31.00 ©2020 IEEE
DOI 10.1109/FPL50879.2020.00024

In summary the main contributions of this paper are:

• We implement a fully configurable Instruction/Data L1
TLB and shared L2 TLB that can output any design

from direct-mapped to fully-associative, lifting the initial

restrictions of configurability only by the number of

entries. This leads to better scaling of performance and

resources, especially for large TLBs. We make our design

publicly available1 to enable further research on the active

topic of virtual memory support for RISC-V.

• We present a case study in which we evaluate the

performance and resource usage of the Rocket Chip [8]

processor with different TLB configurations, by running

benchmarks from SPEC2006int on the Xilinx ZCU102

FPGA.

II. BACKGROUND

In this section we provide background information on

Virtual Memory and the Rocket Chip Generator.

A. Virtual Memory

Virtual memory is an essential concept for processor design

because it provides the illusion of a very large and private

address space to each process running in the system. Virtual

memory offers security through process isolation and also

benefits programmer productivity since the operating system

manages the memory mappings and the hardware accelerates

the translations from the virtual to the physical address space.

RISC-V supports different Virtual Memory systems depend-

ing on the size of the address space (e.g., RV32 Sv32, RV64

Sv39/Sv48 [14]). In this paper we focus on RV64 Sv39 (39-bit

address space) which supports 4KB base pages but also 2MB

and 1GB super pages. The page table, that stores the memory

mappings of each process, is implemented as a multi-level

radix tree (3-level page table in RV64 Sv39). A processor

register called SATP (Supervisor Address Translation and

Protection register) holds the root of the page table. The

physical address is obtained after performing a sequential

lookup in each page table level. The page table walker (PTW)

that performs the virtual-to-physical address translations is

typically implemented in hardware for improved performance.

To accelerate address translation without accessing the page

table on every memory reference, a Translation Lookaside

Buffer (TLB) is used which keeps the recently used trans-

lations. The TLB lies on the critical path of the processor and

as a result its latency and hit rate are essential for the overall

performance. To overcome this problem without sacrificing

the hit rate, multi-level TLB organizations are used; the first

level TLB (L1) is usually small (32-128 entries) but very fast,

while the second level TLB (L2) is usually larger (128-1024

entries) but slower. Finally, a Page Table Walk cache is usually

implemented to hold non-leaf intermediate translations of the

page table to avoid searching levels of the page table (TLBs

hold the leaf translations). Figure 1 shows these structures.

1https://github.com/ncppd/rocket-chip

Fig. 1. Overview of the Memory Management Unit in Rocket Chip Generator.

B. Rocket Chip Generator

The Rocket Chip Generator (RCG) [8] generates RISC-

V ISA [14], [15] based systems using Chisel. The RCG

can also be considered as a library of processor parts that

can easily be reused with any design written in Chisel. By

default, the Rocket Chip Generator instantiates Rocket, an

in-order core implementation, but also supports various core

implementations including the BOOM out-of-order processor

[16]. Rocket is a simple, 5-stage, in-order processor that

implements the RISC-V ISA, including an MMU that supports

page-based virtual memory, TLBs, instruction and data caches,

and a frontend that features dynamic branch prediction with

configurable sizes.

III. TLB HIERARCHY DESIGN

In this section we provide an overview of the original

implementation of the Instruction/Data L1 and shared L2 TLB

in the Rocket Chip Generator. Then, we present the design and

implementation of our proposed configurable L1 and L2 TLB.

Our design can output any organization ranging from direct-

mapped up to fully-associative TLBs.

A. Original TLB overview

The L1 Instruction/Data TLBs are built based on the same

Chisel template in the RCG and only have minor differences

regarding access privileges to pages. The L2 TLB is shared

among the L1 Instruction/Data TLBs and can contain both

Instruction and Data page translations.

1) L1 TLB: The L1 Instruction/Data TLB stores the page
translations in registers using Chisel’s Reg element which can
be synthesized to FPGA Flip-Flops; Reg creates a positive-
edge-triggered register that outputs a copy of the input signal

delayed by one clock cycle, depending on its activation signal.

The original L1 TLB is fully-associative with configurable

number of entries and a Pseudo-LRU replacement policy. The

L1 TLB responds with a hit/miss indication on the next cycle.

2) L2 TLB: The shared L2 TLB stores the page trans-

lations using Chisel’s SeqMem2 construct, which can be

2SeqMem is renamed to SyncReadMem in Chisel3

86

synthesized to FPGA Block RAM. SeqMem basically creates
a synchronous-read, synchronous-write memory, in this case

with one read and one write port. The L2 TLB is direct-

mapped with configurable number of entries. Because of the

direct-mapped organization there is no need for a replacement

policy. The L2 TLB informs of a hit/miss after one cycle

because of the SeqMem construct. The requested value of
a register is obtained during the same cycle. On the other

hand, a request to the SeqMem will be delivered on the next
cycle: SeqMem outputs to a register in order to perform a

synchronous read operation. The L2 TLB keeps a separate

Valid-bit array that indicates the valid entries; it is stored in
Reg banks to avoid the cycle delay of the SeqMem construct.
Note that the Page Table Walk Chisel template incorporates

the shared L2 TLB. The PTW is connected with the L1

Instruction and Data TLBs though a round-robin arbiter that

selects the target virtual address to be translated.

3) Page Table Walk Cache: The PTW Cache is a small

fully-associative cache that stores the non-leaf virtual-to-

physical page translations. In this paper we focus on the TLBs

and leave the PTW Cache for future work.

B. Configurable L1 TLB Architecture

Our design and implementation adheres to the requirements

of the original implementation, i.e., uses (i) Chisel’s Reg
element for fast lookup time, and (ii) same Chisel template for

both Instruction and Data TLBs respecting access privileges.

1) TLB Lookup: Whenever an address translation is re-

quested, we obtain a tag and an index by splitting the VPN.
Using the index we locate the target set and perform a fully-
associative search that matches the tag.

2) TLB Refill: When a TLB refill is requested, we locate
the target set that the VPN/PPN must be inserted using the

index. We either select the first free open slot or perform a

Pseudo-LRU replacement.

3) Replacement Policies: We modify the existing Pseudo-
LRU replacement policy and implement a set-associative alter-

native. The random replacement policy was already supported.

A random replacement policy is an attractive alternative option

thanks to its simplicity; however, it may increase the TLB miss

rate and hence degrade performance.

4) Flushing a L1 TLB entry: When the OS modifies the
page table, the stale TLB entries must be flushed. This happens

when the OS executes the sfence.vma to invalidate an
entry. The flushing of the corresponding TLB entry is done

by zeroing the valid bit of the specified entry.

C. Configurable L2 TLB Architecture

We now describe how lookups, refills, replacements, and

flushes are handled in our configurable L2 TLB.

1) TLB lookup: The TLB lookup mechanism is similar to

that of the L1 TLBs. The only difference is the lookup in

the L2 TLB introduces an additional delay cycle because of

the SeqMem construct. As a result we use registers to hold
intermediate state.

2) TLB Refill: When a TLB refill is ordered, the L2 TLB
handles it similarly with the L1 TLB. The only difference is

the use of masks to update a specific way in a set. Masks are
a feature of the SeqMem construct to ease updating specific
indexes inside a set.

3) Replacement Policies: Both PseudoLRU and random

replacement policies are implemented and can be used for

the L2 TLB. In Section V we choose to evaluate our set-

associative design using Random Replacement Policy in favor

of area constraints.

4) Flushing a L2 TLB Entry: Flushing a TLB entry on

a set-associative organization means that the entry must be

located inside the selected set. In order to fetch the tags of

the selected set, there must be a cycle delay because of the

SeqMem construct. To overcome this overhead and keep the
flushing mechanism simple, we select to flush the whole set.

IV. METHODOLOGY

In this section we describe our evaluation methodology,

including the tools, metrics, and configurations.

A. Software and Hardware tools

We use the Rocket Chip Generator to instantiate a Rocket

5-stage in-order core on the Xilinx ZCU102 FPGA board. The

board has an XCZU9EG FPGA with 548,160 configurable

logic block (CLB) LUTs, 274,080 CLB FFs and 912 BRAMs

[17]. We use Sifive’s Freedom-U-SDK [18] which sets up

a minimal Linux environment. The Rocket Chip SoC boots

the lightweight Buildroot distribution on top of Linux kernel

4.15.0 with 4KB pages.

We use Vivado 2018.1 Design Suite to compile the bit-

stream and to get resource usage results. To evaluate the

different TLB hierarchy scenarios, we run benchmarks from

the SPEC2006int [13] with the test input set, due to the limited

physical memory (512MB) that our Xilinx ZCU102 platform

exposes to the PL. Finally, we use various L1 Instruction/Data

TLB and shared L2 TLB configurations. In all configurations

we use a 4-way 32KB instruction cache and a 4-way 16KB

data cache.

B. Metrics

To evaluate our configurable TLB hierarchy we use the fol-

lowing metrics: (i) FPGA resource usage, i.e., flip-flops, look-

up-tables (LUTs), and block RAM, (ii) TLB performance, i.e.,

TLB Misses-Per-Kilo-Instructions (MPKI), and (iii) system

performance, i.e., Instructions-Per-Cycle (IPC), a performance

metric that isolates the impact of TLB implementation on the

critical path ignoring the processor frequency.

C. Configuration scenarios

We evaluate our modified set-associative design using dif-

ferent configurations for the L1 Instruction/Data TLB and

shared L2 TLB. Table I summarizes the evaluated config-

urations. We choose these configurations to cover a range

of systems from small and embedded up to modern high-

performance general-purpose systems. The TLB reach (i.e.,

87

TABLE I
ROCKET CHIP L1 INSTRUCTION/DATA TLB AND SHARED L2 TLB CONFIGURATION SCENARIOS (ASSOCIATIVITY /SIZE)

Conf. No DTLB ITLB L2 TLB DTLB Reach ITLB Reach L2 TLB Reach

I fully-associative, 32 entries fully-associative, 32 entries - 128KB 128KB -
II fully-associative, 32 entries fully-associative, 32 entries 4-way, 128 entries 128KB 128KB 512KB
III fully-associative, 32 entries fully-associative, 32 entries 4-way, 512 entries 128KB 128KB 2MB
IV 8-way, 64 entries 8-way, 128 entries 8-way, 1024 entries 256KB 512KB 4MB
V 8-way, 128 entries 8-way, 64 entries 8-way, 1024 entries 512KB 256KB 4MB

number of entries × page size) covered by the L1 ranges

from 128KB to 512KB, and for the L2 is up to 4MB. In

the most lightweight configuration we choose not to include

an L2 TLB to quantify the performance and area differences

of the different configurations. Finally, in the most performant

TLB configurations (Configurations IV, V) we swap the size

of the Data and Instruction TLB to identify possible changes

in performance without changing the L2 TLB.

To summarize, the configuration scenarios are chosen to

resemble well-known architectures:

I. Vanilla Rocket Chip without L2 TLB

II. Vanilla Rocket Chip including small L2 TLB

III. ARM Cortex A57 [19]

IV. Intel Skylake [20]

V. Intel Skylake with swapped Instruction/Data TLB sizes.

V. RESULTS

A. Area and Frequency Results

Figure 2 shows the area results for the various configura-

tions. We present the total area of the Rocket Chip SoC as

reported by the Vivado 2018.1 Implementation stage. Note

that the Instruction/Data L1 TLB structures use FFs and the

shared L2 TLB uses BRAMs.

Fig. 2. Area details for different TLB configurations.

In the first three scenarios (Conf I, II, III) Vivado 2018.1

reports that the full Rocket Chip SoC occupies 12% of the total

LUTs, 3% of the total FFs, and 3% of the total BRAMs of the

Xilinx ZCU102. Moving from Configuration II to III there is

a minor increase only in LUTs/FFs, while BRAM usage stays

the same even if the L2 TLB is 4× larger than Configuration

II. To achieve the best possible performance, Vivado uses 4

BRAMs, one for each of the 4 ways of the L2 TLB. Until

the 4-BRAM size is exhausted, the resource usage is slightly

increased, mainly for addressing purposes. Tuning up to the

most performant configurations (Configuration IV, V) in terms

of TLB hit rate, the Rocket Chip SoC occupancy increases to

13% for total LUTs, and 13% for total BRAM/FF usage.

TABLE II
MAXIMUM OPERATING FREQUENCY PER CONFIGURATION

Configuration I II III IV V
Frequency (Mhz) 189 187 186 188 186

Table II shows the maximum frequency achieved with all

configurations. The results show that the increase of the TLB

resources with our design has low impact on the maximum

operating frequency, ranging from 0.53% to 1.59%. In par-

ticular, Configuration IV has a 2× larger DTLB, 4× larger

ITLB, and a 1024 entry L2 TLB, but exhibits only a 0.53%

drop in frequency compared to Configuration I.

B. Performance Results

We now present the results of SPEC2006int benchmark suite

that we obtained on the Xilinx ZCU102 FPGA Board. Figure

3 shows the results of aggregated MPKI in the L1 Instruc-

tion/Data TLBs for the various configurations. We observe that

gobmk, hmmer, sjeng, and libquantum exhibit similar behavior

in L1 TLB MPKI even with larger TLB configurations. The

most demanding in terms of TLB miss rate is mcf, and even

with the largest Configuration V the miss rate is still high.

TABLE III
NUMBER OF L2 TLB MISSES FOR MCF WITH 1024-ENTRY L2 TLB

L2 TLB Associativity Direct-mapped 4-way 8-way
#TLB Misses for mcf 40.2M 6.9M 6.7M

Focusing on the impact of associativity, Table III shows

the number of L2 TLB misses for mcf as we increase the L2

TLB associativity but keep the total number of L2 TLB entries

constant. The L1 Instruction/Data TLB parameters are based

on those of Configuration V. We observe that TLB misses

reduce by 82.8% and 83.3% when associativity changes from

direct-mapped to 4-way and 8-way, respectively. This behavior

highlights the possible impact on the miss rate that a direct-

mapped TLB may have due to conflicting entries, and the ben-

efits of using a set-associative TLB. Note, however, that such

88

Fig. 3. Aggregated MPKI of the L1 Data/Instruction TLBs for the various TLB configurations.

Fig. 4. Aggregated MPKI of the L2 TLB for the various TLB configurations.

TABLE IV
ABSOLUTE IPC VALUES FOR CONF. I AND PERCENTAGE OF IPC

INCREASE FOR CONF. II TO V WITH RESPECT TO CONF. I.

Benchmark I II III IV V

mcf 0.13 - 7.7 % 15.4 % 15.4 %
gobmk 0.44 - - 2.3 % 2.3 %
hmmer 0.58 - - - -
sjeng 0.55 1.8 % 1.8 % 1.8 % 3.6 %
libquantum 0.44 - - - -
h264ref 0.77 1.4 % 1.4 % 2.6 % 2.6 %
omnetpp 0.35 2.9 % 5.7 % 5.7 % 5.7 %
astar 0.36 - - 2.8 % 2.8 %
xalancbmk 0.36 2.8 % 8.3 % 8.3 % 8.3 %
bzip2 0.51 2.0 % 4.0 % 5.9 % 5.9 %
gcc 0.44 2.2 % 2.2 % 4.5 % 4.5 %

behavior depends on the working set of the application and its

access pattern, and that our results are for the SPEC2006int

benchmarks with the rather small test input set (Section IV).

Figure 4 shows the results of the MPKI in the L2 TLB for

the various configurations. The Configuration I is not included,

as it lacks an L2 TLB. We observe that the L2 TLB MPKI

for most benchmarks is nearly zero, particularly for the larger

Configurations IV and V, thanks to the larger reach of the L2

TLB. There is also a major improvement in mcf which stresses

the most the L2 TLB. On average, the miss rate of L2 TLB

is nearly zero with the larger Configurations IV and V.

Finally, Table IV summarizes the absolute IPC value with

Configuration I, and the IPC speedup for Configurations II-V

with respect to Configuration I. As we can see the IPC perfor-

mance increases by up to 15.4 % depending on the demand

of TLB resources and access patterns of every benchmark.

In summary, our configurable TLB hierarchy can improve the

performance with a slight impact in resource usage and nearly

with no impact in frequency.

VI. RELATED WORK

Prior work has focused on two major paths, (i) to improve

specific soft-processor components to gain higher clock fre-

quency and/or lower resource usage, and (ii) to bridge FPGA-

to-ASIC performance to gain more insights about the actual

performance of a processor to be fabricated and also lower

resource usage. Our work is orthogonal to those approaches, as

we design a configurable TLB hierarchy that is FPGA-friendly

but can also be synthesized for ASICs, while obtaining actual

performance results for various scenarios.

1) Improving soft-processor performance: There has been
extensive prior work on improving soft-processor design [1]–

[7] with hand-optimized HDL code and accurate micro-

architectural design to produce as best as possible design

mappings on an FPGA. Future work on Chisel HCL and

FIRRTL Compiler [21] could target FPGA-specific structures

to improve the overall performance of a design and reduce the

resource utilization.

2) FPGA Resource Efficiency and Accurate Simulation:
CAMs are known to be FPGA-hostile structures [22]. Magyar

et al. proposed Golden Gate [23] to create Decoupled FPGA-

accelerated Simulators by replacing CAMs with multi-cycle

models, thus reducing resource utilization. As fully associative

TLBs are typically implemented as CAMs, future work on

resource optimization could aid FPGA-simulated research

frameworks, especially on multi-core systems which have

higher FPGA resource demand.

VII. CONCLUSIONS

In this paper we explored the Memory Management Unit

of the Rocket Chip Generator and lifted its implementation

limitations in the TLB hierarchy. We implemented a fully

configurable L1 and L2 TLB, that can output any design from

direct-mapped to fully-associative. Our approach enables de-

sign space exploration and allows the Rocket Chip Generator

to instantiate cores with TLBs that match the needs of TLB

intensive applications. We make our design publicly available

to enable further research on the active topic of virtual memory

support for the RISC-V architecture.

ACKNOWLEDGMENTS

We would like to thank Dr. Tuo Li from the UNSW School

of Computer Science and Engineering for porting the Rocket

Chip Generator to the Xilinx ZCU102 board, his contribution

and useful tips helped us considerably.

89

REFERENCES

[1] K. Aasaraai and A. Moshovos, “What limits the operating frequency
of a soft processor design,” in 2014 International Conference on
ReConFigurable Computing and FPGAs (ReConFig14), 2014, pp. 1–
6.

[2] K.Aasaraai and A. Moshovos, “An Efficient Non-blocking Data Cache
for Soft Processors,” in 2010 International Conference on Reconfig-
urable Computing and FPGAs, 2010, pp. 19–24.

[3] M. Labrecque and J. G. Steffan, “Improving pipelined soft processors
with multithreading,” in 2007 International Conference on Field Pro-
grammable Logic and Applications, 2007, pp. 210–215.

[4] D. Wu, K. Aasaraai, and A. Moshovos, “Low-cost, high-performance
branch predictors for soft processors,” in 2013 23rd International
Conference on Field programmable Logic and Applications, 2013, pp.
1–6.

[5] E. Matthews and L. Shannon, “TAIGA: A new RISC-V soft-processor
framework enabling high performance CPU architectural features,” in
2017 27th International Conference on Field Programmable Logic and
Applications (FPL), 2017, pp. 1–4.

[6] H. Wong, V. Betz, and J. Rose, “Efficient methods for out-of-order
load/store execution for high-performance soft processors,” in 2013
International Conference on Field-Programmable Technology (FPT),
2013, pp. 442–445.

[7] K. Aasaraai and A. Moshovos, “Design space exploration of instruc-
tion schedulers for out-of-order soft processors,” in 2010 International
Conference on Field-Programmable Technology, 2010, pp. 385–388.

[8] K. Asanović, R. Avizienis, J. Bachrach, S. Beamer, D. Biancolin,
C. Celio, H. Cook, D. Dabbelt, J. Hauser, A. Izraelevitz, S. Karandikar,
B. Keller, D. Kim, J. Koenig, Y. Lee, E. Love, M. Maas,
A. Magyar, H. Mao, M. Moreto, A. Ou, D. A. Patterson,
B. Richards, C. Schmidt, S. Twigg, H. Vo, and A. Waterman, “The
Rocket Chip Generator,” EECS Department, University of California,
Berkeley, Tech. Rep. UCB/EECS-2016-17, Apr 2016. [Online].
Available: http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-
2016-17.html

[9] Sifive. Freedom Platform. [Online]. Available:
https://github.com/sifive/freedom

[10] Tuo Li. Rocket Chip Generator, Xilinx ZCU102 port. [Online].
Available: https://github.com/li3tuo4/rc-fpga-zcu

[11] UCB BAR. Support for Rocket Chip on Zynq FPGAs. [Online].
Available: https://github.com/ucb-bar/fpga-zynq

[12] J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman, R. Avižienis,
J. Wawrzynek, and K. Asanović, “Chisel: Constructing hardware in a
scala embedded language,” in Proceedings of the 49th Annual Design
Automation Conference, 2012, p. 1216–1225.

[13] J. L. Henning, “SPEC CPU2006 Benchmark Descriptions,” SIGARCH
Comput. Archit. News, vol. 34, no. 4, p. 1–17, Sep. 2006.

[14] A. Waterman and K. Asanovic. (2017, May) The RISC-V Instruction
Set Manual, Volume II: Privileged Architecture, Document Version 1.10.
RISC-V Foundation.

[15] Andrew Waterman and K. Asanovic. (2017, May) The RISC-V Instruc-
tion Set Manual, Volume I: User-Level ISA, Document Version 2.2.
RISC-V Foundation.

[16] C. Celio, D. A. Patterson, and K. Asanović, “The Berkeley Out-of-Order
Machine (BOOM): An Industry-Competitive, Synthesizable, Parameter-
ized RISC-V Processor,” EECS Department, University of California,
Berkeley, Tech. Rep. UCB/EECS-2015-167, Jun 2015. [Online].
Available: http://www2.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-
2015-167.html

[17] Xilinx. Xilinx ZCU102 User Guide. [On-
line]. Available: https://www.xilinx.com/support/documentation/
boards and kits/zcu102/ug1182-zcu102-eval-bd.pdf

[18] Sifive. Freedom-U-SDK. [Online]. Available:
https://github.com/sifive/freedom-u-sdk

[19] ARM. ARM Cortex-A57 Technical Reference Manual. [Online].
Available: http://infocenter.arm.com/help/topic/com.arm.doc.ddi0488c/
DDI0488C cortex a57 mpcore r1p0 trm.pdf

[20] Intel. Intel® 64 and IA-32 Architectures Op-
timization Reference Manual. [Online]. Avail-
able: https://www.intel.com/content/dam/www/public/us/en/documents/
manuals/64-ia-32-architectures-optimization-manual.pdf

[21] A. Izraelevitz, J. Koenig, P. Li, R. Lin, A. Wang, A. Magyar, D. Kim,
C. Schmidt, C. Markley, J. Lawson, and J. Bachrach, “Reusability is firrtl
ground: Hardware construction languages, compiler frameworks, and
transformations,” in Proceedings of the 36th International Conference
on Computer-Aided Design, 2017, p. 209–216.

[22] H. Wong, V. Betz, and J. Rose, “Quantifying the gap between fpga
and custom cmos to aid microarchitectural design,” IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, vol. 22, no. 10, pp.
2067–2080, 2014.

[23] A. Magyar, D. Biancolin, J. Koenig, S. Seshia, J. Bachrach, and
K. Asanović, “Golden gate: Bridging the resource-efficiency gap be-
tween asics and fpga prototypes,” in 2019 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), 2019, pp. 1–8.

90

