
Energy-Efficient Address Translation

Vasileios Karakostas 1,2 Jayneel Gandhi 5 Adrián Cristal 1,2,6 Mark D. Hill 5

Kathryn S. McKinley 3 Mario Nemirovsky 4 Michael M. Swift 5 Osman S. Unsal 1

1Barcelona Supercomputing Center 2Universitat Politecnica de Catalunya
3Microsoft Research 4ICREA Senior Research Professor at Barcelona Supercomputing Center

5University of Wisconsin - Madison 6Spanish National Research Council (IIIA-CSIC)
{vasilis.karakostas, adrian.cristal, mario.nemirovsky, osman.unsal}@bsc.es

{jayneel, markhill, swift}@cs.wisc.edu, mckinley@microsoft.com

ABSTRACT
Address translation is fundamental to processor performance.
Prior work focused on reducing Translation Lookaside Buffer
(TLB) misses to improve performance and energy, whereas
we show that even TLB hits consume a significant amount
of dynamic energy.

To reduce the energy cost of address translation, we first
propose Lite, a mechanism that monitors the performance
and utility of L1 TLBs, and adaptively changes their sizes
with way-disabling. The resulting TLBLite organization op-
portunistically reduces the dynamic energy spent in address
translation by 23% on average with minimal impact on TLB
miss cycles. To further reduce the energy and performance
overheads of L1 TLBs, we also propose RMMLite that tar-
gets the recently proposed Redundant Memory Mappings
(RMM) address-translation mechanism. RMM maps most
of a process’s address space with arbitrarily large ranges of
contiguous pages in both virtual and physical address space
using a modest number of entries in a range TLB. RMMLite
adds to RMM an L1-range TLB and the Lite mechanism.
The high hit ratio of the L1-range TLB allows Lite to down-
size the L1-page TLBs more aggressively. RMMLite reduces
the dynamic energy spent in address translation by 71% on
average. Above the near-zero L2 TLB misses from RMM,
RMMLite further reduces the overhead from L1 TLB misses
by 99%.

These proposed designs target current and future energy-
efficient memory system design to meet the ever increasing
memory demands of applications.

1. INTRODUCTION
Processors employ Translation Lookaside Buffers (TLBs)

to perform quick address translation on every memory oper-
ation. The TLB holds mappings from the virtual to the phys-
ical address space. Since their invention in the 1960s [19],
TLBs have been a small monolithic structure and were able
to deliver high performance. Commercial processors, how-
ever, keep on devoting more resources to memory and ad-
dress translation to meet the ever increasing memory de-
mands of memory intensive workloads. The common TLB
organization found today includes multi-level TLBs with sup-
port for huge pages [6, 23, 48].

978-1-4673-9211-2/16/$31.00 c©2016 IEEE

L1-4KB TLB

L2 TLB

L1-2MB TLB L1-1GB TLB

Figure 1: A common per-core two-level TLB organiza-
tion that supports multiple page sizes (4 KB, 2 MB, and
1 GB) through separate L1 TLBs. All L1 TLBs are ac-
cessed on every memory operation, increasing the dy-
namic energy spent in address translation.

TLBs have been reported to consume a significant fraction
of processor energy [2, 4, 21, 31, 32, 33]. The recent growth
in the complexity of TLBs has further increased their energy
consumption—a recent industrial report suggests that TLBs
consume 3-13% of a processor’s power [49].

The energy overheads associated with the TLBs come from
two sources: (i) the static energy of the chip due to TLB
misses that lead to longer execution times [22, 35], and (ii)
the dynamic energy of TLB resources that are accessed to
lookup the address translation on every memory operation.
However, reducing the energy of address translation is not
straightforward. When the static energy of the chip decreases
due to fewer TLB misses, the dynamic energy of the TLBs
increases due to the augmented complexity that ensures the
low TLB miss ratio.

Prior research focused on reducing the dynamic energy of
TLBs through various techniques, such as optimizing TLB
circuits [31], partitioning TLBs [10, 17, 18, 37], filtering
accesses to TLBs [11, 17, 21], dynamically resizing mono-
lithic TLBs [9], virtual caches to access TLBs on L1 cache
misses [14, 29, 52], and selectively avoiding TLB accesses
[32, 33, 34]. However, these energy optimization techniques
do not take into account hardware support for increasing the
TLB reach (e.g., huge pages), that primarily targets improv-
ing performance and reducing static energy overheads due to
TLB misses. Only the recent work on TLBPred [41] consid-
ers huge pages for improving the dynamic energy efficiency
in TLBs. The performance of TLBPred depends on huge
pages successfully reducing misses, but prior work shows
that huge pages can still incur high performance overheads
due to TLB misses [13, 15, 36]. In response, researchers pro-
posed techniques that further increase the TLB reach [13, 22,
35, 42, 43, 50] to overcome the limitations of huge pages.

The goal of this work is to improve the energy efficiency
of address translation in the presence of mechanisms that
increase TLB reach.

Towards that goal, we perform energy characterization of
the address translation path. We use a common TLB organi-
zation, found in Intel x86-64 processors as our baseline, that
includes a per-core two-level TLB hierarchy, with a separate
set associative L1 TLB for each supported page size, e.g.,
for 4 KB, 2 MB, and 1 GB pages, as shown in Figure 1. Our
analysis shows that the L1 TLBs are the primary source of
dynamic energy spent in address translation. We also find
that page walks consume significant amount of energy with
4 KB pages. While huge pages and other techniques that
increase TLB reach [13, 22, 35, 42, 43, 50] reduce the en-
ergy due to page walks, we observe that the “innocent” L1
TLB remains the dominant source of dynamic address trans-
lation energy, because separate L1 TLBs are accessed on ev-
ery memory operation.

Our approach for providing energy-efficient address trans-
lation is driven by the following key observation: simply
accessing all L1 TLB resources might not improve perfor-
mance, because not all L1 TLBs contribute the same to hits,
especially when techniques that increase the TLB reach are
employed.

We propose Lite, an opportunistic mechanism that targets
commodity processors with TLB support for huge pages.
Lite monitors the utility of ways in the L1 TLBs for each
page size based on the distance of TLB hits from the least-
recently-used (LRU) position in an interval fashion, similar
to the accounting cache [20] and utility-based cache parti-
tioning [46]. At the end of each interval, Lite evaluates the
utility of L1 TLBs. In case the utility of some active ways is
insignificant, Lite downsizes each L1 TLB individually by
disabling ways [8]. Lite thus accesses fewer ways in the
L1 TLBs, saving energy at the cost of introducing a few
additional misses. The resulting TLBLite organization re-
quires minimal modifications and opportunistically reduces
L1 TLB energy with negligible impact on performance.

We additionally propose RMMLite to reduce the energy
further with Redundant Memory Mappings (RMM), a re-
cent proposal for reducing page walks [35]. RMM provides
support for arbitrarily large range translations, i.e., range of
pages that are contiguous in both virtual and physical ad-
dress space with same page protections. Prior work con-
sidered only L2-range TLBs. We introduce to RMM an
L1-range TLB and add the Lite resizing mechanism to the
L1-page TLBs. The L1-range TLB is accessed in parallel
with the L1-page TLBs and is small (e.g., 4 entries) in or-
der to meet the tight timing requirements of L1 TLBs, yet
the L1-range TLB is powerful. Each range TLB entry can
hold a mapping of unlimited size, that enables the L1-range
TLB to enjoy a high hit ratio. Therefore, Lite downsizes
L1-page TLBs more aggressively without affecting perfor-
mance. Overall, RMMLite improves both energy efficiency
and performance of address translation.

To evaluate the proposed TLBLite and RMMLite designs,
we developed a TLB simulator based on Pin [39], pagemap
[3], and Cacti [38] and we ran various TLB intensive work-
loads from Spec2006 [26], BioBench [7], and Parsec [16].
Our findings show that TLBLite reduces the dynamic energy
spent in address translation by 23% while slightly increas-
ing the cycles spent in TLB misses (from 16.6% to 17.2%)
compared to huge pages [5]. RMMLite reduces the dynamic

energy spent in address translation by 71% on average com-
pared to huge pages. Above the near-zero L2 TLB misses
from RMM, RMMLite further reduces the overhead from L1
TLB misses by 99%.

In summary, the main contributions of this paper are:

• We characterize the dynamic energy spent in address
translation, and identify the L1 TLBs and page walks
as the most significant sources.

• We show that simply accessing all L1 TLBs might not
improve performance in the presence of huge pages.

• We propose Lite to reduce the energy spent in L1 TLBs
by opportunistically disabling resources with low im-
pact on performance, and apply it to a standard TLB
hierarchy with support for huge pages (TLBLite).

• We propose RMMLite, that adds to RMM an L1-range
TLB and Lite, to reduce further the energy and per-
formance overheads spent in L1 TLBs leveraging the
efficient representation of range translations.

2. BACKGROUND
This section provides background on address translation,

highlights some trends for improving TLB performance, and
then outlines some characteristics that are found in commod-
ity processors. Note that although we focus on the x86-64
architecture, the proposed solutions apply to other architec-
tures that include TLB support for huge pages.

2.1 Address Translation Hardware Support
With virtual memory each process sees a vast amount of

memory. The operating system divides the physical memory
into pages and allocates them to different processes [25].

Page Table. The page table implements the abstraction of
virtual memory, storing in memory all the translations from
virtual to physical address space for each process as a four-
level hierarchical radix tree in the x86-64 architecture [30].

Translation Lookaside Buffer (TLB). To accelerate the
translation of virtual to physical addresses, processors em-
ploy a Translation Lookaside Buffer (TLB). The TLB caches
recently used page table entries. The TLB is consulted on ev-
ery memory operation, and is on the critical path of access-
ing the memory hierarchy. In case of a TLB miss, a hardware
state machine walks the page table, a process named page
walk, and fetches the corresponding page table entry from
memory. Thus, the TLB is the most crucial component for
accelerating virtual memory, and its miss ratio significantly
affects the performance of the processor [13, 15, 30, 36].

MMU cache. Due to the performance impact of page
walks, the TLB is backed by a memory management unit
(MMU) cache [12, 15, 27]. The MMU cache reduces the
latency of page walks by caching intermediate levels of the
page table. A hit in the MMU cache eliminates one or more
levels of a page walk. Thus, a page walk requires between
one and four memory operations.

We use the term “TLB” to refer either to the general structure
of the TLB or to the TLB hierarchy as a whole depending on the
context, whereas we use L1 or L2 TLBs to refer explicitly to that
(L1 or L2) level’s TLBs.

L1 DTLBs L2 DTLBs

Sandy Bridge / Haswell / Broadwell Sandy Bridge Haswell Broadwell
Page-size Entries Assoc. Page-size Entries Assoc. Page-size Entries Assoc. Page-size Entries Assoc.

4 KB 64 4-way 4 KB 512 4-way
4 KB/2 MB 1024 8-way 4 KB/2 MB 1536 n/a

2 MB 32 4-way 2 MB —
1 GB 4 fully 1 GB — 1 GB — 1 GB 16 n/a

Table 1: Details of the private, per-core, data TLB hierarchy for the three latest Intel processor architectures.

2.2 Trends in TLBs
Two-level TLBs form a common organization for address

translation in today’s processors [23, 48]. The TLB organi-
zation is per-core. The L1 TLB is usually small (e.g., 64
entries) and features a very fast search operation (1-2 cy-
cles), while the L2 TLB is usually larger (e.g., 512 entries)
and holds more translations at the cost of increased access
latency (∼7 cycles [28]). To boost the performance further,
processors provide separate TLBs for data and instructions.

Huge Pages [1, 5] increase the TLB reach and reduce
the performance overhead of page walks [13, 15, 36, 41] by
mapping a large fixed size region of memory with a single
TLB entry [27, 40, 45, 48]. For example, the x86-64 archi-
tecture allows a process to use 4 KB pages with 2 MB pages
and 1 GB pages at the same time. The hardware support for
huge pages usually includes either a separate set associative
L1 TLB for each page size, as in Intel processors [23], or
a single fully associative L1 TLB that supports both 4 KB
and huge pages, as in SPARC and AMD processors [6, 48].
These two approaches dominate because supporting all page
sizes in a single set associative TLB is not straight-forward:
the page size defines the index bits to access the TLB, but the
page size is unknown during the TLB lookup time [41, 51].
Separate set associative TLBs are generally more energy-
efficient as compared to fully associative TLB. As we focus
on energy, our baseline in this work assumes the more effi-
cient separate set associative L1 TLBs.

Redundant Memory Mappings (RMM) [35] is a recent
proposal that increases the TLB reach and reduces the num-
ber of page walks transparently to applications. RMM has
some similarity to other approaches that pack multiple page
table entries into a single TLB entry, such as sub-blocked
TLBs [50], CoLT [43], Clustered TLBs [42], and Direct
Segments [13, 22]. What distinguishes RMM from those
schemes is the concept of range translation: an arbitrarily
large range of pages that are contiguously allocated in both
virtual and physical address space. The range translations
provide an efficient alternative representation—in addition
to paging—that allow RMM to map most of the process’s
address space with a modest number of entries. In this way,
RMM reduces robustly most page walks, compared to other
schemes [35]. RMM introduces a software managed range
table to store per-process range translations and an L2-range
TLB that is accessed in parallel with the L2-page TLB. To
increase the likelihood and contiguity of range translations,
RMM introduces eager paging in the operating system that
allocates memory in ranges at request time.

2.3 Summary
Table 1 overviews the details of the per-core TLB hierar-

chy for the recent Sandy Bridge and Haswell, and the forth-
coming Broadwell x86-64 processors. We observe that all

these processors have a two-level TLB organization, with
support for various pages sizes by separate individual L1
TLBs. This data suggests their recipe for improving TLB
performance consists of having separate L1 TLBs for vari-
ous page sizes, and increasing the size of the L2 TLB which
is off the critical path.

To summarize, the TLB resources become larger and more
complex to meet the increasing TLB demands of memory
intensive workloads. However the performance and static
energy improvements come at the cost of accessing multi-
ple structures and increasing dynamic energy. Our approach
reduces the dynamic energy spent in address translation by
leveraging mechanisms that increase TLB reach, such as huge
pages and range translations, making the case for energy-
efficient address translation.

3. ENERGY CHARACTERIZATION
In this section we analyze the sources of dynamic energy

spent in address translation. We first provide an overview of
our methodology, and then we analyze where the dynamic
energy is spent with 4 KB pages, huge pages, and RMM.

3.1 Methodology Overview
For the purposes of this study, we developed a detailed

TLB simulator based on Pin [39], pagemap [3], and Cacti
[38]. We model a private, per-core, two-level TLB organi-
zation backed by an MMU cache. The configuration and
the parameters are based on those of an x86-64 Intel Sandy
Bridge processor and summarized in Table 1.

We assume the existence of a mechanism that statically
disables accesses to TLB resources that are not used. For
instance, the L1-2MB TLB and L1-1GB TLB could be dis-
abled for a running process that uses only 4 KB pages and
no 2 MB or 1 GB pages. Such a mechanism could be eas-
ily implemented in hardware; a mask would enable lookups
in the L1-2MB TLB only after a 2 MB page table entry has
been fetched by a page walk. In this study we assume the ex-
istence of such mechanism, and thus unused TLB structures
do not account for the dynamic energy overhead.

We fast-forward execution for 50 billion instructions and
then simulate for the next 50 billion instructions. More de-
tails about our methodology can be found in Section 5.

3.2 Where is the energy spent?
Figures 2a and 2b break down the dynamic energy spent

in address translation and the cycles spent in L1 and L2 TLB
misses for various workloads with the following three con-
figurations: (i) 4KB supports 4 KB pages, (ii) THP supports
both 4 KB and 2 MB pages with transparent huge pages [5],
and (iii) RMM supports 4 KB, 2 MB pages, and range trans-
lations with a 32-entry fully associative L2-range TLB [35].
We assume optimistically that all page walk references hit

0%

20%

40%

60%

80%

100%

120%

140%

4
K

B
TH

P
R

M
M

4
K

B
TH

P
R

M
M

4
K

B
TH

P
R

M
M

4
K

B
TH

P
R

M
M

4
K

B
TH

P
R

M
M

4
K

B
TH

P
R

M
M

4
K

B
TH

P
R

M
M

4
K

B
TH

P
R

M
M

4
K

B
TH

P
R

M
M

astar cactusADM GemsFDTD mcf omnetpp zeusmp mummer canneal geomean

D
yn

am
ic

 E
n

e
rg

y
(%

)

L1-4KB TLB L1-2MB TLB L2-4KB TLB L2-range TLB MMU cache Page walks

(a) Dynamic energy spent in address translation (%)

0%

20%

40%

60%

80%

100%

4
K

B
TH

P
R

M
M

4
K

B
TH

P
R

M
M

4
K

B
TH

P
R

M
M

4
K

B
TH

P
R

M
M

4
K

B
TH

P
R

M
M

4
K

B
TH

P
R

M
M

4
K

B
TH

P
R

M
M

4
K

B
TH

P
R

M
M

4
K

B
TH

P
R

M
M

astar cactusADM GemsFDTD mcf omnetpp zeusmp mummer canneal geomean

C
yc

le
s

sp
e

n
t

in
 T

LB
 m

is
se

s
(%

)

L1 TLB misses L2 TLB misses

(b) Cycles spent in L1 and L2 TLB misses (%)

Figure 2: Dynamic energy spent in address translation (a) and cycles spent in TLB misses (b) with three configurations:
(i) 4KB supports only 4 KB pages, (ii) THP supports both 4 KB and 2 MB pages with transparent huge pages [5], and
(iii) RMM supports 4 KB, 2 MB pages, and range translations with an L2-range TLB [35]. The results are normalized
to those with 4 KB pages per workload. The two major sources of dynamic energy overhead with 4 KB pages are the
L1 TLBs and the page walks. THP and RMM reduce the energy and cycles spent in page walks, but increase the total
dynamic energy spent in address translation because multiple L1 TLBs are accessed on every memory operation.

0%

50%

100%

150%

200%

astar cactusADM GemsFDTD mcf omnetpp zeusmp mummer canneal geomean

D
yn

am
ic

 E
n

er
gy

 (
%

)

100% hit ratio in L1 cache 50% hit ratio in L1 cache 0% hit ratio in L1 cache

Figure 3: Sensitivity analysis of the dynamic energy
spent in address translation, ranging the L1 cache hit ra-
tio from 100% (all accesses hit in L1 cache) to 0% (all
accesses miss in L1 cache but hit in L2 cache) for the
page walk references with 4 KB pages. The locality of
page walks significantly affects the dynamic energy.

always in the L1 cache of the memory hierarchy with re-
spect to the dynamic energy. The results are normalized to
the dynamic energy spent with 4KB pages per workload.

We identify two major sources of dynamic energy over-
head with 4KB and THP configurations:

1. L1 TLBs energy consumption. To make address trans-
lation as fast as possible, the processor accesses all L1
TLB structures, i.e., the L1-4KB TLB, the L1-2MB
TLB, and the L1-1GB TLB, in parallel on every mem-
ory operation. Consequently, the L1 TLBs consume
60% and 91% of dynamic energy with 4KB and THP.
We further identify the L1-4KB TLB as the most dom-
inant source of dynamic energy (50% of dynamic en-
ergy with THP) due to its larger size compared to the
other L1-page TLBs.

2. Page walk energy consumption. On a TLB miss at
every TLB level, the page table hardware walks the
page table, which requires multiple memory accesses
(e.g., 4, 3, and 2 memory accesses for 4 KB, 2 MB, and
1 GB pages) that incur performance and energy penal-
ties. This source of energy overhead becomes more
prevalent (i) for applications that suffer frequently from
page walks, such as cactusADM and mcf, and (ii) as
the page walk references hit less in the L1 cache. Fig-
ure 3 quantifies the impact of page walk locality in the
dynamic energy as the L1 cache hit ratio for the page
walk references reduces from 100% (all references hit
in L1 cache) to 0% (all references miss in L1 cache, but

hit in L2 cache). The dynamic energy may increase by
up to 91% for mcf, due to poor page walk locality in
the cache hierarchy.

3.3 Do huge pages help?
We observe that THP reduces the cycles spent in TLB

misses by 83% on average compared to 4KB. However, THP
affects the dynamic energy of address translation in a less
straightforward way compared to performance. With THP,
the dynamic energy of address translation decreases only
for cactusADM and mcf, and increases for all other work-
loads. This happens because THP reduces the number of
page walks and their portion in dynamic energy along with
static energy by completing the workload faster, as explained
next in Section 3.5. However, this saving occurs at the cost
of accessing one extra L1 TLB for 2MB pages on every
memory operation, which in turn increases the dynamic en-
ergy spent for address translation in the L1-page TLBs. Over-
all, THP increases the dynamic energy spent in address trans-
lation by up to 43% for canneal and by 4% on average, com-
pared to 4 KB pages.

3.4 Does RMM help?
The RMM configuration has the same TLB organization

as THP, including a 32-entry L2-range TLB. In addition,
the RMM configuration assumes perfect eager paging, i.e.,
the operating system perfectly allocates all contiguous pages
of virtual address space to contiguous physical pages. We
observe that RMM eliminates almost completely the page
walks, and reduces by 96% the cycles spent in TLB misses
compared to 4KB. However, RMM incurs high dynamic en-
ergy overhead (only 4% less on average compared to 4KB),
as the access pattern to the L1 TLBs is similar to THP.

3.5 Discussion
The total energy consumption is the sum of static and dy-

namic energy. Since huge pages and range translations (and
other techniques that increase TLB reach [13, 22, 42, 43,
50]) enable most applications to execute faster, they also de-
crease the static energy of the system. However, optimizing
for energy efficiency requires addressing both dynamic and
static sources of energy. Thus, in addition to reducing the
execution cycles and the static energy, in this paper we focus
on reducing the dynamic energy spent in address translation.

10
-3

10
-2

10
-1

10
0

10
1

10
2

L
1

 T
L

B
 M

P
K

I

Execution time

32

32 / 64

Base 64 32 16

(a) astar

10
1

10
2

L
1

 T
L

B
 M

P
K

I

Execution time

16 / 32 / 64

Base 64 32 16

(b) cactusADM

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

L
1

 T
L

B
 M

P
K

I

Execution time

16 / 32 / 64

Base 64 32 16

(c) GemsFDTD

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

L
1

 T
L

B
 M

P
K

I

Execution time

16

32 / 64

Base 64 32 16

(d) mcf

10
-1

10
0

10
1

10
2

L
1

 T
L

B
 M

P
K

I

Execution time

Base 64 32 16

64

(e) omnetpp

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

L
1

 T
L

B
 M

P
K

I

Execution time

Base 64 32 16

16 / 32 / 64

(f) zeusmp

10
-2

10
-1

10
0

10
1

10
2

L
1

 T
L

B
 M

P
K

I

Execution time

Base 64 32 16

32 / 64

(g) mummer

10
0

10
1

10
2

L
1

 T
L

B
 M

P
K

I

Execution time

Base 64 32 16

64

(h) canneal

Figure 4: L1 TLB misses per thousand instructions (MPKI) (aggregated for all L1 TLBs) during the execution of 50
billion instructions with the following four configurations: (i) Base supports only 4 KB pages (same as 4KB in Section 3),
(ii) 64 supports both 4KB and 2 MB pages (same as THP in Section 3), (iii) 32 has the same configuration as 64 but with
32-entry 2-way L1-4KB TLB, and (iv) 16 has the same configuration as 64 but with 16-entry direct-mapped L1-4KB
TLB. We observe that most workloads exhibit similar performance even with smaller L1-4KB TLBs in the presence of
huge pages, but there is no single TLB configuration that is optimal for all workloads and during all execution time.

4. EFFICIENT ADDRESS TRANSLATION
An ideal solution for energy-efficient address translation

would reduce the energy spent in L1 TLB accesses and page
walks with negligible impact on performance. To provide
energy-efficient address translation, we propose:

• Lite, a mechanism that monitors the utility of ways
in all L1-page TLBs and adaptively changes their size
with way-disabling [8]. The resulting TLBLite organi-
zation opportunistically reduces L1 TLB energy with
negligible impact on performance, and requires mini-
mal modifications to commodity processors.

• RMMLite, a novel TLB organization that leverages the
powerful representation of range translations in RMM
[35]. RMMLite adds an L1-range TLB and the Lite
mechanism to RMM. The high hit ratio in the L1-range
TLB allows Lite to further reduce the energy spent in
L1-page TLBs and reduce significantly the total energy
and performance overheads of L1 TLB misses.

4.1 Opportunity
Our approach is based on the question: “Do we need to

access all L1 TLB resources on every memory operation?”
For example, if the hits in L1 TLBs are dominated by those
entries for 2 MB pages, then the L1-4KB TLB could be dy-
namically downsized to reduce the dynamic energy spent in
L1 TLBs without affecting performance, and vice versa.

To quantify our hypothesis, we profile the performance
of L1 TLBs with transparent huge pages enabled [5], when
a smaller L1-4KB TLB with fixed size is employed during
the execution. We assume that the L1-4KB TLB becomes

smaller by reducing ways in powers-of-two while the num-
ber of sets remains constant. Figure 4 shows the misses in
the L1 TLBs per thousand instructions (MPKI) during the
execution of 50 billion instructions. Configurations 64, 32,
and 16 employ a 64-entry 4-way, a 32-entry 2-way, and a
16-entry direct-mapped L1-4KB TLB, respectively. The L1-
2MB TLB is 32-entry 4-way for all configurations.

We find that most workloads exhibit similar performance
even with smaller L1-4KB TLBs in the presence of huge
pages. However, there is no single TLB configuration that
is optimal for all workloads. For example, astar and mcf re-
quire configuration 16, while cactusADM, GemsFDTD, and
mummer require configuration 32, to provide similar per-
formance as with configuration 64 that runs with all L1 TLB
resources enabled. In addition, a single TLB configuration is
often not the optimal during the workload’s total execution
due to phased behavior. For example, astar, GemsFDTD,
and mcf require different configurations to preserve similar
performance. Thus, a mechanism that dynamically resizes
the L1 TLBs is required to adapt to the workload.

4.2 The Lite Mechanism
Lite dynamically adapts the size of L1 TLBs to reduce

their dynamic energy. Lite consists of three components:
(i) the monitoring mechanism that tracks the actual perfor-
mance of L1 TLBs and estimates the utility of all L1 TLBs,
(ii) the decision algorithm that decides whether to change
the size of the L1 TLBs, and (iii) the reconfiguration mech-
anism that configures the size of L1 TLBs.

4.2.1 Monitoring TLBs
Lite tracks the performance of the L1 TLBs in the actual-

Interval nth

End of interval
The Decision Algorithm

resizes the L1 TLBs

Interval n-1th Interval n+1th

During interval
(i) Count misses in L1 TLBs

(ii) Track recency information
for hits in the L1 TLBs

Figure 5: Lite divides the execution time of an applica-
tion into intervals. During each interval, Lite tracks the
performance of L1 TLBs. At the end of each interval,
Lite decides whether to resize the L1 TLBs.

misses-counter for an interval. The counter is increased on
every translation lookup that misses in L1 TLBs of that core
and that triggers an access to the L2 TLB.

Lite estimates the cost of way-disabling by tracking the
utility of all active ways for each L1 TLB in powers-of-
two. Lite leverages the LRU replacement policy and relies
on the distance of TLB hits from the LRU position in each
set to estimate the utility of ways, similar to the accounting
cache [20] and utility-based cache partitioning [46]. Lite in-
troduces lru-distance-counters per L1 TLB. Since Lite dis-
ables ways in powers-of-two, we only need [log2(n)+1] lru-
distance-counters for each n-way set-associative L1 TLB.
Figure 6 shows Lite for an 8-way L1 TLB. The correspond-
ing lru-distance-counter is increased on every L1 TLB hit:
a hit with distance 7, 6, 4-5, or 0-3 from the LRU position
increases the lru-distance-counters [0], [1], [2], or [3], corre-
spondingly. In this way, each lru-distance-counter holds the
number of TLB misses that would have occurred, if those
ways were disabled. Note that when less ways are active, the
corresponding lru-distance-counters are not used, because
there are no tags to keep track of activity.

Finally, Lite keeps the actual number of L1 TLB misses
of the previous interval in the previous-misses-counter to re-
spond to TLB performance degradation, as explained next.

4.2.2 The Decision algorithm
Figure 7 shows the simplified pseudocode for the deci-

sion algorithm of Lite. Lite resizes all L1-page TLBs (4KB,
2MB, and 1GB) of each core’s TLB organization separately.
The algorithm uses the number of L1 TLB misses per thou-
sand instructions (MPKI) to estimate the performance of the
L1 TLBs and the utility of the active ways in each L1 TLB.

Disabling ways. At the end of each interval, Lite esti-
mates for each L1-page TLB (4KB, 2MB, and 1GB) the
potential MPKI if way disabling had been applied to the
currently active ways. To achieve this, Lite uses the actual-
misses-counter and the lru-distance-counters. In case the po-
tential MPKI for fewer ways does not significantly increase
compared to the actual MPKI, based on a threshold ε , then
Lite disables those ways for that L1 TLB. During next inter-
val, the resized L1 TLBs will save dynamic energy on every
memory access.

Activating ways. Lite profiles only the active ways and
therefore can reason only for them. However, Lite is un-
aware whether more than the active ways would be really
useful. For example, consider an 8-way L1 TLB that cur-
rently runs with 4 active ways; Lite sees that the potential
MPKI does not significantly change whether using 4 or 2 ac-

L1 TLB
8-way

Hit

Y

N

0 1 2 3

LRU-distance-counters

If
 m

is
s

in
 a

ll
L1

 T
LB

s
a
cc

e
ss

 t
h

e
 L

2
 T

LB
s

7 6 5 4 3 2 1 0

translation request
MRU LRU

0 1 2 3
#misses with
4-ways active

#misses with
2-ways active

#misses with 1-way active

#misses with 0-ways active

hit distance

Figure 6: Lite introduces lru-distance-counters per L1
TLB to track the utility of ways [20, 46]. The correspond-
ing counter is increased on each L1 TLB hit depending
on the distance from the LRU position. At the interval
end, each counter holds the number of L1 TLB misses
that would have occurred, if those ways were disabled.

tive ways, and decides to use 2 ways. However, if all 8 ways
were active, the potential MPKI could be significantly lower
and Lite would have not decided to apply way-disabling.
The problem becomes even more prevalent when the 1-way
configuration is used, as no alternatives are evaluated. To
respond in such cases, Lite randomly activates all the ways
in all L1 TLBs based on a probability. The randomly intro-
duced variability allows also Lite to avoid pathological cases
in which the decisions synchronize with non-representative
phases of the application, that may lead to poor decisions.

Finally, Lite activates all ways in the L1 TLBs when their
performance degrades, e.g., when the application experiences
phased TLB behavior, or the operating system breaks huge
pages to 4 KB pages to respond to memory pressure. Lite
records the actual MPKI of the previous interval, and com-
pares it to the actual MPKI of the current interval. In case
the MPKI surpasses the defined threshold ε , Lite activates
all ways in the L1 TLBs.

Threshold. The threshold ε can either be a relative per-
centage increase or an absolute value increase of MPKI with
respect to the reference value, i.e., the MPKI with all ways
activated in L1 TLBs. The choice depends on the reference
value itself. A relative percentage is preferable for high ref-
erence values (e.g., more than 1 MPKI) to control Lite’s im-
pact. An absolute value is preferable for lower reference val-
ues, because even though the MPKI increases with respect to
the reference value, the MPKI remains still negligible and,
thus, Lite correctly decides to disable ways.

4.2.3 Reconfiguring TLBs
Lite reconfigures the L1 TLBs through way-disabling [8].

Way-disabling requires that the memory structure be parti-
tioned into subarrays. We assume that such partitions are
either already present in L1-TLBs for both timing and en-
ergy reasons, or can be easily implemented with minor cir-
cuit modifications. With way-disabling, only the active ways
are searched in each TLB lookup, and thus the dynamic en-
ergy spent in address translation reduces.

Consistency. TLBs are read-only structures and do not
hold dirty data. Thus, when Lite deactivates ways in a TLB,
no write-back operations are necessary. Lite only invalidates
translations in the disabled ways, so that when these ways
are re-activated, they will not hold any stale translations.

// at the end of each interval;
compute the actual_mpki based on actual_misses_counter;
if (random probability is triggered) then

activate all ways in L1 TLBs;
else if (actual_mpki - previous_mpki ≥ ε) then

activate all ways in L1 TLBs;
else

potential_misses = actual_misses;
for each L1 TLB of that core do

for (i = log2(active_ways); i ≥ 1; i–) do
potential_misses += lru_distance_counter[i];
compute the potential_mpki based on
potential_misses;
if (potential_mpki - actual_mpki < ε) then

disable half of the active ways;
else

potential_misses -= lru_distance_counter[i];
break;

end
end

end
end
if (previous_mpki > actual_mpki) then

previous_mpki = actual_mpki;
end

Figure 7: Pseudocode of Lite’s decision algorithm.

4.3 RMMLite for Energy-Efficient TLBs
We also propose to add Lite and an L1-range TLB to Re-

dundant Memory Mappings (RMM) [35] to further reduce
the energy and performance overheads of L1 TLBs. As de-
scribed in Section 2.2, RMM uses range translations, an ef-
ficient, alternative representation of arbitrarily large ranges
of pages that are contiguously allocated in both virtual and
physical address space. RMM targets reducing the number
of page walks and employs an L2-range TLB that is accessed
in parallel with the L2-page TLB.

RMMLite augments the RMM with a small L1-range TLB
and adds the Lite mechanism to the L1-page TLBs. The L1-
range TLB is accessed on every memory operation in par-
allel with the L1-page TLBs. The L1-range TLB is fully
associative and very small, e.g., 4 entries like the small L1-
1GB TLB, so that it meets the tight timing requirements of
L1 TLBs. The functionality and organization of L1-range
TLB is the same as the originally proposed L2-range TLB,
i.e., it caches a small number of range translations. Fig-
ure 8 shows the proposed TLB hierarchy for energy-efficient
address translation. On an L1-range TLB hit, the address
translation is obtained fast. On an L2-range TLB hit (after a
miss in L1 TLBs), the hit range translation entry is copied to
the L1-range TLB, in addition to copying the corresponding
page table entry in the L1-page TLBs as in RMM. Note that
the L1 TLBs for huge pages could either be simply disabled
by the naive mechanism that was discussed in Section 3.1, or
completely replaced by the (possibly larger) L1-range TLB.

The L1-range TLB itself increases the dynamic energy
spent in L1 TLB accesses, because one more TLB is ac-
cessed on every memory operation. In addition, the L1-
range TLB performs range checks instead of equality checks
as in translation for fixed size memory regions. Thus, an L1-
range TLB access costs more than an L1-page TLB access in
terms of energy. However, each L1-range TLB entry maps
an arbitrarily large range of contiguously allocated pages.
The L1-range TLB can achieve higher hit ratio compared to

[V47 V46 V12] [V11 ... V0]

L2-Range-TLBL2-4KB-TLB

Page+Range
Table Walk

Hit
Y N

[P47 P46 P12] [P11 ... P0]

Hit
YN

L1-Range-TLBL1-4KB-TLB

Hit
Y N

Hit
YN

Figure 8: RMMLite introduces an L1-range TLB and
Lite (not shown) to the L1-page TLBs, in addition to
the architectural support of RMM.

page TLBs. This increased hit ratio in the L1-range TLB re-
duces further the utility of the L1-page TLBs. In response,
Lite disables ways more aggressively in the L1-page TLBs
compared to when only huge pages are supported, and re-
duces the total dynamic energy due to L1 TLB accesses.

Thus, RMMLite makes the case for energy-efficient ad-
dress translation, reducing further the energy overheads at
all levels while improving also performance.

4.4 Discussion
Fully associative TLBs. We described Lite in the con-

text of TLB organizations that support huge pages with sepa-
rate set associative L1 TLBs [23], where each L1 TLB holds
mappings of a single size. A different approach for huge
page support is having a single fully associative L1 TLB
that holds mappings of all page sizes [6, 48]. The same
Lite mechanism for reducing dynamic energy applies to such
TLB organizations. Although there is no notion of ways in a
fully associative TLB, Lite clusters the distance of TLB hits
from the LRU position as if there were ways, and reduces
the TLB size in powers-of-two.

Lite’s Cost. We did not analyze additional circuitry over-
heads for Lite, because the cost of computing the LRU dis-
tance and incrementing the corresponding counter (on a TLB
hit) should be much lower than looking up the address (inde-
pendently of a hit or miss) [20]. In addition, when the TLB
operates with the minimum configuration (e.g., with only 1-
way active), the additional circuits of Lite are not used and
do not affect dynamic energy; this case is responsible for
63.7% of L1 TLB lookups with RMMLite (Table 5).

5. METHODOLOGY
This section describes our simulation infrastructure and

benchmarks.

L1-4KB TLB
64 entries

4-way assoc.

L2-4KB TLB
512 entries

4-way assoc.

(a) 4KB

L1-4KB TLB
64 entries

4-way assoc.

L2-4KB TLB
512 entries

4-way assoc.

L1-2MB TLB
32 entries

4-way assoc.

(b) THP & TLBLite

L1-4KB/2MB TLB
64 entries

4-way assoc.

L2-4KB/2MB TLB
512 entries

4-way assoc.

(c) TLBPP

L1-4KB TLB
64 entries

4-way assoc.

L2-4KB TLB
512 entries

4-way assoc.

L1-2MB TLB
32 entries

4-way assoc.

L2-Range TLB
32 entries
fully assoc.

(d) RMM

L1-4KB TLB
64 entries

4-way assoc.

L2-4KB TLB
512 entries

4-way assoc.

L1-Range TLB
4 entries

fully assoc.

L2-Range TLB
32 entries
fully assoc.

(e) RMMLite

Figure 9: TLB configurations.

Component
Size

Assoc.
Read Write Leakage

(entr.) (pJ) (pJ) (mW)

L1-4KB TLB

64 4-way 5.865 6.858 0.3632
32 2-way 1.881 2.377 0.1491
16 1-way 0.697 0.945 0.0636

L1-2MB TLB

32 4-way 4.801 5.562 0.1715
16 2-way 1.536 1.924 0.0703
8 1-way 0.568 0.764 0.0295

L1-range TLB 4 fully 1.806 1.172 0.1395

L2-4KB TLB 512 4-way 8.078 12.379 1.6663

L2-range TLB 32 fully 3.306 1.568 0.2401

MMU-cachePDE 32 2-way 1.824 2.281 0.1402
MMU-cachePDPT E 4 fully 0.766 0.279 0.0500
MMU-cachePML4 2 fully 0.473 0.158 0.0296

L1-Cache 32KB 8-way 174.171 186.723 13.3364

Table 2: Dynamic energy per read operation and write
operation, and leakage power with 32 nm process tech-
nology for the memory structures that participate in ad-
dress translation, based on Cacti [38].

Simulation infrastructure. We developed a Memory Ma-
nagement Unit (MMU) simulator based on Pin [39], instru-
ment all memory operations, and simulate various TLB con-
figurations. Because TLB studies require longer instruction
counts than other processor components for applications to
realistically stress the TLBs, slow cycle-accurate simulators
make for infeasibly long simulation times. Thus, we devel-
oped our own simulation infrastructure that focuses on the
address translation path based on Pin, pagemap, and Cacti.

For a simulated L2 TLB miss, we access the real page
table of the running process through pagemap [3] to deter-
mine whether it is a 4 KB page, a 2 MB page, or a range
translation entry and its boundaries. To deduce the number
of required memory references per page walk, we simulate
a per-core MMU cache based on Intel’s Paging Structure
Caches [27]. The MMU cache consists of three individual
structures, each of which holds different levels of the page
table (PDE, PDPTE, and PML4 levels). These structures
are all accessed in parallel after an L2 TLB miss. The con-
figuration details of the MMU cache is based on [15] and
summarized in Table 2.

We use Cacti [38] with 32 nm process technology to es-
timate the dynamic energy of the memory structures that
participate in address translation. To estimate the dynamic
energy of an N-entry range TLB, we use Cacti with the con-
figuration of a regular fully associative page TLB, but with
2× more tag bits in order to account for the effect of the
double comparison that takes place in the range TLB. To es-
timate the dynamic energy of a page TLB with some ways
disabled (e.g., 64-entry 4-way, with 2 ways disabled), we

Energy Model

TLBs / MMUcache ET LB/MMUcache = A∗Eread +M ∗Ewrite

Page walks Epage walks = Mem∗EreadL1 cache

Total energy Etotal =
n
∑

i=1
(ET LBi/MMUcachei)+Epage walks

Performance Model

L1 TLB hits
CyclesL1T LBmisses = 0
(all L1 TLBs are accessed in parallel with L1 dcache)

L1 TLB misses
CyclesL2T LBmisses = ML1T LBs ∗7
(all L2 TLBs are accessed in parallel)

L2 TLB misses CyclesL2T LBmisses = ML2T LBs ∗50

Total cycles CyclesT LBmisses =CyclesL1T LBmisses +CyclesL1T LBmisses

A: Accesses M: Misses
Mem: Memory references to fetch PTEs (up to 4)

Table 3: Dynamic energy and performance models.

use the dynamic energy results from Cacti for the resulting
smaller structure (e.g., 32-entry 2-way TLB). Table 2 sum-
marizes the results from Cacti for all simulated structures.

We couple the results from our MMU simulator with those
from Cacti. This simulation infrastructure computes misses
and hits per memory structure, and estimates the dynamic
energy and the cycles spent in L1 and L2 TLB misses.

Configurations. We simulate the following configura-
tions: (i) 4KB supports only 4 KB pages. (ii) THP supports
4 KB and 2 MB pages through transparent huge pages [5],
and is the state of the practice for reducing the performance
overhead of L1 and L2 TLB misses. (iii) TLBLite includes
the Lite mechanism on top of THP. (iv) RMM supports 4 KB,
2 MB pages, and an L2-range TLB. (v) TLBPP is a perfect
implementation of TLBPred [41]. TLBPred is a state of the art
scheme that seeks to improve the energy efficiency of TLBs
by supporting different page sizes in a single set associative
TLB. TLBPred uses prediction to decide whether a reference
goes to a huge page or not, in order to choose the appro-
priate TLB index bits and access the TLB. Our perfect im-
plementation of TLBPred , named TLBPP, assumes a perfect
predictor with no energy overhead that always chooses the
correct page size per lookup operation. In addition, TLBPP
mixes 4 KB and 2 MB pages in both L1 and L2 TLBs. (vi)
RMMLite supports 4 KB pages and range translations in both
L1 and L2 TLBs, and includes the Lite mechanism.

We set the threshold ε of Lite to 12.5% (1/8th) relative in-
crease in MPKI for TLBLite and as a 0.1 absolute increase for
RMMLite, i.e., Lite disables ways if the predicted MPKI re-
mains less than 12.5% or by 0.1 compared to the MPKI with
fully enabled resources for TLBLite and RMMLite. Lite re-
duces the L1 TLBs down to 1-way active but never turns off

0%

20%

40%

60%

80%

100%

120%

140%

4K
B

TH
P

TL
B

-L
it

e
R

M
M

TL
B

-P
P

R
M

M
-L

it
e

4K
B

TH
P

TL
B

-L
it

e
R

M
M

TL
B

-P
P

R
M

M
-L

it
e

4K
B

TH
P

TL
B

-L
it

e
R

M
M

TL
B

-P
P

R
M

M
-L

it
e

4K
B

TH
P

TL
B

-L
it

e
R

M
M

TL
B

-P
P

R
M

M
-L

it
e

4K
B

TH
P

TL
B

-L
it

e
R

M
M

TL
B

-P
P

R
M

M
-L

it
e

4
K

B
TH

P
TL

B
-L

it
e

R
M

M
TL

B
-P

P
R

M
M

-L
it

e

4K
B

TH
P

TL
B

-L
it

e
R

M
M

TL
B

-P
P

R
M

M
-L

it
e

4
K

B
TH

P
TL

B
-L

it
e

R
M

M
TL

B
-P

P
R

M
M

-L
it

e

4K
B

TH
P

TL
B

-L
it

e
R

M
M

TL
B

-P
P

R
M

M
-L

it
e

astar cactusADM GemsFDTD mcf omnetpp zeusmp mummer canneal geomean

D
yn

am
ic

 E
n

er
gy

 (
%

)
L1-4KB TLB L1-2MB TLB L1-range TLB L2-4KB TLB L2-range TLB MMU cache Page walks

0%

20%

40%

60%

80%

100%

4
K

B
TH

P
TL

B
-L

it
e

R
M

M
TL

B
-P

P
R

M
M

-L
it

e

4
K

B
TH

P
TL

B
-L

it
e

R
M

M
TL

B
-P

P
R

M
M

-L
it

e

4K
B

TH
P

TL
B

-L
it

e
R

M
M

TL
B

-P
P

R
M

M
-L

it
e

4
K

B
TH

P
TL

B
-L

it
e

R
M

M
TL

B
-P

P
R

M
M

-L
it

e

4
K

B
TH

P
TL

B
-L

it
e

R
M

M
TL

B
-P

P
R

M
M

-L
it

e

4K
B

TH
P

TL
B

-L
it

e
R

M
M

TL
B

-P
P

R
M

M
-L

it
e

4
K

B
TH

P
TL

B
-L

it
e

R
M

M
TL

B
-P

P
R

M
M

-L
it

e

4
K

B
TH

P
TL

B
-L

it
e

R
M

M
TL

B
-P

P
R

M
M

-L
it

e

4
K

B
TH

P
TL

B
-L

it
e

R
M

M
TL

B
-P

P
R

M
M

-L
it

e

astar cactusADM GemsFDTD mcf omnetpp zeusmp mummer canneal geomean

C
yc

le
s

Sp
en

t
in

 T
LB

 m
is

se
s

(%
)

L1 TLB misses L2 TLB misses

0
.0

0
2

2

0
.0

0
4

0

0
.0

0
0

1

0
.0

1
6

6

2
.0

E-
0

6

0
.0

4
5

3

2
.0

E-
0

6

0
.2

3
0

2

1
.3

5
2

3

Figure 10: Dynamic energy spent in address translation and cycles spent in TLB misses for TLB intensive workloads.

Suite Description Application Memory

SPEC 2006

astar 350 MB
compute & memory cactusADM 690 MB
intensive single-threaded GemsFDTD 860 MB
workloads mcf 1.7 GB

omnetpp 165 MB
zeusmp 530 MB

PARSEC
RMS multi-threaded

canneal 780 MB
workloads

BioBench
Bioinformatics single-

mummer 470 MB
threaded workloads

Table 4: Workload description and memory footprint.

completely an L1 TLB in our experiments. Finally, RMM
and RMMLite use perfect eager paging, i.e., the operating
system perfectly allocates all contiguous pages of virtual ad-
dress space to contiguous physical pages. Figure 9 summa-
rizes the simulated configurations and the corresponding pa-
rameters.

Dynamic energy. We report the amount of dynamic en-
ergy spent in the address translation path. Table 3 summa-
rizes the equations of our energy model. The dynamic en-
ergy per translation structure is the sum of the dynamic en-
ergy spent due to lookup operations and the dynamic energy
spent due to write operations after misses. Our model for the
dynamic energy spent in page walks optimistically assumes
that all page walk references always hit in the L1 cache of
the memory hierarchy.

Performance. We report misses per thousand instructions
in the L1 and L2 TLBs, and cycles spent in L1 and L2 TLB
misses. Our estimations are based on the following assump-
tions: (i) L1 TLBs are accessed in parallel with the data
cache, so L1 TLB hits add no cycles, (ii) L1 TLB misses
trigger lookup accesses in L2 TLBs that take 7 cycles [28],
and (iii) L2 TLB misses trigger page walks that take 50 cy-
cles [36] for all applications. Thus, the cycles spent in TLB
misses are the sum of the cycles spent in L1 TLB misses and
in L2 TLB misses. Table 3 summarizes the equations of our

performance model. Note that short L1 TLB misses, like
those that hit in the L2 TLB, can be overlapped with exe-
cution in some cases, and may not decrease performance by
that much. For RMM and RMMLite, the range table walks
occur in the background and do not add to the execution
time, but they incur dynamic energy overhead.

Benchmarks. We focus on various workloads that exhibit
poor TLB performance from Spec2006 [26], BioBench [7],
and Parsec [16], summarized in Table 4. We define as TLB
intensive workloads those that experience more than 5 L1
TLB misses per thousand instructions with 4 KB pages. We
also report results for all remaining Spec2006 and Parsec
workloads in the sensitivity analysis subsection. We fast-
forward the execution for 50 billion instructions, and then
simulate for the next 50 billion instructions.

6. RESULTS
This section evaluates the two proposed TLB organiza-

tions: TLBLite that adds the Lite mechanism on top of TLB
support for huge pages, and RMMLite that adds the Lite mech-
anism and the 4-entry L1-range TLB on top of RMM. We
first evaluate how these TLB organizations reduce the dy-
namic energy in address translation and the cycles spent in
L1 and L2 TLB misses for a set of TLB intensive workloads.
Then we present results for more workloads, and finally we
perform a sensitivity analysis based on the interval size and
the random probability of Lite.

6.1 Dynamic Energy & Performance
Figure 10 shows the reduction of the dynamic energy in

address translation and the cycles spent in L1 and L2 TLB
misses for all the simulated configurations explained in Sec-
tion 5. The results are normalized to the 4KB configuration.

Overview. The results show that (i) TLBLite reduces the
dynamic energy with respect to THP (Figure 10 top) with-
out significantly affecting the performance (Figure 10 bot-
tom), and (ii) RMMLite further reduces the dynamic energy

0
.0

8
3

0

5

10

15

20

25

30

35

astar cactusADM GemsFDTD mcf omnetpp zeusmp mummer canneal average

L1
 T

LB
 M

P
K

I
4KB THP TLB-Lite RMM TLB-PP RMM-Lite

105

(a) L1 TLB MPKI

0
.0

0
0

3

0

5

10

15

20

25

30

35

astar cactusADM GemsFDTD mcf omnetpp zeusmp mummer canneal average

L2
 T

LB
 M

P
K

I

4KB THP TLB-Lite RMM TLB-PP RMM-Lite

67

0
.0

0
1

7

(b) L2 TLB MPKI

Figure 11: L1 and L2 TLB misses per thousand instructions.

L1 TLB Lookups (%) L1 TLB Hits (%)

TLBLite RMMLite TLBLite RMMLite

4KB 2MB 4KB
4KB 2MB 4KB Range

4-ways 2-ways 1-way 4-ways 2-ways 1-way 4-ways 2-ways 1-way

astar 39.6 57.2 3.2 96.7 3.3 0.0 0.0 0.1 99.9 75.7 24.3 32.4 67.6
cactusADM 22.8 24.0 53.2 14.6 11.9 73.5 0.1 0.1 99.9 90.8 9.2 0.0 100.0
GemsFDTD 42.9 44.9 12.2 54.4 41.7 4.0 2.3 0.4 97.4 30.1 69.9 0.1 99.9
mcf 25.8 26.7 47.5 97.8 1.7 0.5 0.0 0.0 100.0 38.9 61.1 12.0 88.0
omnetpp 100.0 0.0 0.0 100.0 0.0 0.0 99.3 0.7 0.0 55.2 44.8 51.0 49.0
zeusmp 45.5 43.5 11.1 86.6 13.3 0.1 0.0 0.0 100.0 37.6 62.4 0.0 100.0
mummer 32.8 67.2 0.0 98.4 0.5 1.0 7.8 79.4 12.9 95.7 4.3 5.8 94.2
canneal 100.0 0.0 0.0 100.0 0.0 0.0 97.5 2.5 0.0 91.0 9.0 25.9 74.1

average (%) 51.2 32.9 15.9 81.1 9.0 9.9 25.9 10.4 63.7 64.4 35.6 15.9 84.1

Table 5: (i) Percentage of lookups with 4, 2 and 1 active ways in the L1-page TLBs (left), and (ii) percentage of hits in
the L1 TLBs (right), for TLBLite and RMMLite. RMMLite disables more ways than TLBLite thanks to the L1-range TLB.

of TLB lookups and eliminates almost completely the per-
formance and the associated static energy overheads of L1
TLB misses.

4KB exhibits two sources of dynamic energy overhead:
the L1 TLB lookups and the page walks. Depending on the
workload’s locality in the TLB hierarchy, one of the two
sources dominates. Figure 11 shows the MPKI for the L1
and L2 TLBs. The L1 TLB lookups are responsible for the
majority of overhead in these workloads, except for cactu-
sADM and mcf that suffer more frequently from page walks.
In addition, previous studies have shown that 4 KB pages
lead to significant performance overhead [13, 15, 36] that
increases in turn the total static energy.

THP reduces significantly the portion of dynamic energy
and the performance overhead of page walks, due to fewer
L1 and L2 TLB misses. However, THP increases the amount
of dynamic energy spent in the L1 TLBs because the L1-
2MB TLB is accessed on every memory operation, in ad-
dition to the L1-4KB TLB. These accesses increase the to-
tal dynamic energy consumption compared to 4KB for most
workloads—up to 43% for canneal. On average, THP in-
creases the dynamic energy by 4%, while reducing the cy-
cles spent in TLB misses by 83%, compared to 4KB pages.

TLBLite reduces the dynamic energy by 23% on average
and by 40% and 37% for cactusADM and GemsFDTD, com-
pared to THP. TLBLite opportunistically reduces the dynamic
energy spent in address translation when the utility of having
all ways active becomes low. Table 5 shows the percentage
of active ways during the execution time. On average, all
4-ways are active for 51% and 81% of the time in the L1-
4KB TLB and L1-2MB TLB. In addition, TLBLite barely
affects performance for most workloads except for canneal.
Compared to the THP configuration, TLBLite increases the
L1 and L2 TLB misses by 4% and 3% on average, and the

cycles spent in TLB misses from 16.6% to 17.2%. Note that
cycles spent in short TLB misses may be overlapped with
execution; thus the impact on total execution time will be
lower.

RMM eliminates the dynamic energy and performance
overheads of page walks due to the L2-range TLB. How-
ever, the dynamic energy spent in the L1 TLBs remains high,
similar to that with THP, because of accessing both L1 TLBs
for 4KB and 2MB pages. On average, RMM reduces the dy-
namic energy by only 8% and the cycles spent in TLB misses
by 80%, compared to THP.

TLBPP is a perfect implementation of TLBPred [41], as
explained in Section 5. We observe that TLBPP reduces the
dynamic energy and performance overheads of page walks
because it enjoys larger reach compared to THP. In addition,
the TLBPP reduces the dynamic energy in L1 TLBs since
only a single structure for both 4 KB and 2 MB pages is
accessed on every memory operation, but these results under
report its true costs. On average, TLBPP would reduce the
dynamic energy by 43% and the cycles spent in TLB misses
by 67% compared to THP, but is unrealizable in practice.

RMMLite reduces the dynamic energy in address transla-
tion the most compared to the other approaches. RMMLite
reduces dynamic energy by more than 80% for mcf and cac-
tusADM, and by 71% on average while eliminating more
than 99% of cycles spent in TLB misses compared to THP.
This occurs because the high hit ratio of the L1-range TLB
allows Lite to disable ways more aggressively in the L1-4KB
TLB. Table 5 also shows the percentage of L1 TLB hits that
come from the L1-4KB TLB and the L1-range TLB. The
L1-range TLB contributes by 84.1% to the L1 TLB hits, and
thus, RMMLite depends less on the performance of the L1-
4KB TLB and runs 63.7% of time with only 1-way active in
the L1-4KB TLB (Table 5).

0%

50%

100%

150%

200%

4
K

B

TH
P

TL
B

-L
it

e

R
M

M

TL
B

-P
P

R
M

M
-L

it
e

4
K

B

TH
P

TL
B

-L
it

e

R
M

M

TL
B

-P
P

R
M

M
-L

it
e

4
K

B

TH
P

TL
B

-L
it

e

R
M

M

TL
B

-P
P

R
M

M
-L

it
e

4
K

B

TH
P

TL
B

-L
it

e

R
M

M

TL
B

-P
P

R
M

M
-L

it
e

4
K

B

TH
P

TL
B

-L
it

e

R
M

M

TL
B

-P
P

R
M

M
-L

it
e

4
K

B

TH
P

TL
B

-L
it

e

R
M

M

TL
B

-P
P

R
M

M
-L

it
e

4
K

B

TH
P

TL
B

-L
it

e

R
M

M

TL
B

-P
P

R
M

M
-L

it
e

4
K

B

TH
P

TL
B

-L
it

e

R
M

M

TL
B

-P
P

R
M

M
-L

it
e

4
K

B

TH
P

TL
B

-L
it

e

R
M

M

TL
B

-P
P

R
M

M
-L

it
e

perlbench bzip2 gcc gobmk hmmer sjeng libquantum h264ref xalancbmk

D
yn

am
ic

 E
n

e
rg

y
(%

)
L1-4KB TLB L1-2MB TLB L1-range TLB L2-4KB TLB L2-range TLB MMU cache Page walks

0%

50%

100%

150%

200%

4
K

B
TH

P
TL

B
-L

it
e

R
M

M
TL

B
-P

P
R

M
M

-L
it

e

4
K

B
TH

P
TL

B
-L

it
e

R
M

M
TL

B
-P

P
R

M
M

-L
it

e

4K
B

TH
P

TL
B

-L
it

e
R

M
M

TL
B

-P
P

R
M

M
-L

it
e

4
K

B
TH

P
TL

B
-L

it
e

R
M

M
TL

B
-P

P
R

M
M

-L
it

e

4
K

B
TH

P
TL

B
-L

it
e

R
M

M
TL

B
-P

P
R

M
M

-L
it

e

4
K

B
TH

P
TL

B
-L

it
e

R
M

M
TL

B
-P

P
R

M
M

-L
it

e

4K
B

TH
P

TL
B

-L
it

e
R

M
M

TL
B

-P
P

R
M

M
-L

it
e

4
K

B
TH

P
TL

B
-L

it
e

R
M

M
TL

B
-P

P
R

M
M

-L
it

e

4
K

B
TH

P
TL

B
-L

it
e

R
M

M
TL

B
-P

P
R

M
M

-L
it

e

bwaves milc leslie3d namd soplex povray calculix lbm geomean

D
yn

am
ic

 E
n

er
gy

 (
%

)

0%

50%

100%

150%

200%

4
K

B
TH

P
TL

B
-L

it
e

R
M

M
TL

B
-P

P
R

M
M

-L
it

e

4K
B

TH
P

TL
B

-L
it

e
R

M
M

TL
B

-P
P

R
M

M
-L

it
e

4K
B

TH
P

TL
B

-L
it

e
R

M
M

TL
B

-P
P

R
M

M
-L

it
e

4K
B

TH
P

TL
B

-L
it

e
R

M
M

TL
B

-P
P

R
M

M
-L

it
e

4K
B

TH
P

TL
B

-L
it

e
R

M
M

TL
B

-P
P

R
M

M
-L

it
e

4K
B

TH
P

TL
B

-L
it

e
R

M
M

TL
B

-P
P

R
M

M
-L

it
e

4K
B

TH
P

TL
B

-L
it

e
R

M
M

TL
B

-P
P

R
M

M
-L

it
e

4K
B

TH
P

TL
B

-L
it

e
R

M
M

TL
B

-P
P

R
M

M
-L

it
e

4K
B

TH
P

TL
B

-L
it

e
R

M
M

TL
B

-P
P

R
M

M
-L

it
e

4K
B

TH
P

TL
B

-L
it

e
R

M
M

TL
B

-P
P

R
M

M
-L

it
e

4K
B

TH
P

TL
B

-L
it

e
R

M
M

TL
B

-P
P

R
M

M
-L

it
e

4K
B

TH
P

TL
B

-L
it

e
R

M
M

TL
B

-P
P

R
M

M
-L

it
e

dedup ferret fluidanimate raytrace streamcluster x264 blackscholes bodytrack facesim swaptions vips geomean

D
yn

am
ic

 E
n

er
gy

 (
%

)

Figure 12: Dynamic energy reduction for the rest of Spec2006 (top and middle) and Parsec (bottom) workloads.

Compared to TLBPP, RMMLite brings less dynamic en-
ergy improvements only for omnetpp and canneal because
the L1-4KB TLB has high utilization for those workloads
(Table 5). Still, RMMLite reduces the dynamic energy over-
head by 49% on average, compared to TLBPP. Note that
RMMLite and TLBPP are orthogonal; a combined approach
could use the L1-range TLB for range translations, the TLBPP
for pages, and the Lite mechanism to disable ways oppor-
tunistically, as with regular page TLBs.

In addition to the dynamic energy savings, RMMLite sig-
nificantly reduces L1 and L2 TLB misses, further improv-
ing the performance and reducing static energy overheads.
Compared to RMM, RMMLite improves performance more
because it eliminates most L1 TLB misses, in addition to
eliminating most L2 TLB misses as RMM does. Overall
RMMLite makes a good case for energy-efficient address trans-
lation.

6.2 Sensitivity Analysis
Other workloads. Our evaluation in the previous section

focused on a set of TLB intensive workloads. For complete-
ness, we ran experiments with other workloads that stress
the TLB hierarchy less and observed similar results. Fig-
ure 12 shows the reduction in dynamic energy for the rest of
Spec2006 (top and middle) and Parsec (bottom) workloads.
On average, TLBLite reduces the dynamic energy spent in
address translation by 26% and 20% for those Spec2006 and
Parsec workloads, while RMMLite reduces the dynamic en-
ergy by 72% and 66%. Regarding performance, the results
are similar to those for the TLB intensive workloads.

Interval size and random probability. Lite depends on

the size of the interval and the random probability for acti-
vating all ways in the L1 TLBs. To quantify the impact of
these parameters, we performed a sensitivity analysis vary-
ing the interval size from 1 million to 10 million instructions
and the random probability from 1/8 to 1/128. We find that
Lite performs slightly better in terms of both performance
and dynamic energy, with shorter interval and with lower
probability. The short interval allows Lite to respond faster
to performance changes, while the low probability avoids
frequently enabling all ways to check the potential for per-
formance improvement.

Reducing static energy. Although we focused on re-
ducing the dynamic energy of address translation, the pro-
posed techniques can also reduce the static (leakage) energy
of TLBs when combined with schemes that power-gate the
disabled ways [24, 44].

Threshold. The benefits of Lite depend also on the thresh-
old ε for increased MPKI due to way-disabling. The thresh-
old choice introduces a trade-off between dynamic and static
energy. Studying the impact of different thresholds on total
energy and performance could be the subject of future work.

7. RELATED WORK
This section reviews the related work (except for TLBPred

[41] discussed in Section 6), categorized into techniques that
optimize TLBs for energy efficiency, dynamically resizing
TLBs, selective TLB lookups, and virtual caches.

Optimizing TLBs for energy efficiency. Several tech-
niques have been proposed to improve the energy efficiency
of TLBs. Juan et al. [31] proposed circuit optimizations that
reduce the lookup energy in TLBs. Banked TLBs [17, 18,

37] and TLB filtering [11, 17, 21] can also help in reduc-
ing dynamic energy by accessing only one bank or just a
filter on each memory operation. Similarly, Lee et al. [37]
proposed a partitioned L1 TLB, with each part serving trans-
lations for a semantic region (stack, heap, global data). That
TLB organization was further improved leveraging the low
entropy of information in the stack and global data memory
addresses [10]. To reduce the TLB energy for multi-issue su-
perscalar processors, Ballapuram et al. [11] proposed a com-
paction mechanism for issuing only a single TLB lookup,
when multiple memory references access the same page at
the same cycle. Xue et al. [53] proposed to speculatively per-
form address translation, based on the base-displacement ad-
dress, by accessing a small L0 TLB early in the pipeline, so
that the translation latency is not increased. Finally, Seyedi
et al. [47] proposed combining nano electro mechanical swit-
ches with CMOS technology for fully associative L1 TLBs.

While these techniques reduce the dynamic energy spent
in TLBs, they do not consider mechanisms that increase TLB
reach [13, 22, 35, 42, 43, 50] to improve energy efficiency.
Our proposed designs leverage the benefits of such mech-
anisms to reduce the total energy spent in address transla-
tions. Thus, TLBLite and RMMLite are orthogonal to those
approaches, and could further improve their benefits.

Dynamically resizing TLBs. Balasubramonian et al. [9]
proposed an interval-based scheme to dynamically resize the
TLB, trading off dynamic energy for performance. The ob-
jective of that approach is similar to Lite. However, their
design and algorithm targets a monolithic, fully associative
TLB and tracks only whether a TLB entry was referenced or
not to decide for resizing. Thus, the energy savings oppor-
tunity becomes lower in case that the TLB entries are refer-
enced only few times but not heavily utilized. In contrast,
Lite tracks the utility of TLB entries in the miss ratio, con-
siders the presence of separate L1 TLBs, and provides better
opportunity for resizing TLB resources.

Selective lookups in TLBs. Kadayif et al. [32] com-
bined hardware and compiler techniques to avoid lookups
in instruction TLBs. A register holds the most recently used
iTLB entry, and the compiler generates instructions that ac-
cess only a register instead of the iTLB. That approach was
extended later for the data TLB [33, 34]. However, the TLBs
are still used in such system. Thus, TLBLite and RMMLite are
again orthogonal and can further reduce the total energy cost
of address translation in these systems.

Virtual caches. Prior work proposed virtual caches [14,
29, 52] to reduce the energy and performance overheads of
address translation. With virtual caches, the cache hierar-
chy is accessed without TLB lookups, unless a cache miss
occurs. While saving almost all TLB energy, they introduce
many more changes to the architecture and require additional
support to handle synonyms and enforce protection.

8. SUMMARY
The goal of this paper is to improve the energy efficiency

in address translation. We proposed Lite, a mechanism that
monitors the performance and utility of L1 TLBs and adap-
tively changes their sizes with way-disabling, and applied
Lite to a standard TLB hierarchy with support for huge pages,
named TLBLite. In addition, we proposed RMMLite, based

on Redundant Memory Mappings (RMM). RMMLite aug-
ments RMM with an L1-range TLB and the Lite mechanism.
The high hit ratio of the L1-range TLB allows Lite to disable
ways in L1-page TLBs more aggressively. Our results show
that TLBLite reduces the dynamic energy spent in address
translation by 23% with minimal impact on TLB miss cy-
cles. RMMLite further reduces the energy spent in address
translation by 71% and the overhead from L1 TLB misses
by 99%, on top of the near-zero L2 TLB misses of RMM.

ACKNOWLEDGEMENTS
We thank our anonymous reviewers, Oscar Palomar and Adria
Armejach for their insightful comments and feedback on the
paper. This work is supported in part by the European Union
(FEDER funds) under contract TIN2012-34557, the Euro-
pean Union’s Seventh Framework Programme (FP7/2007-
2013) under the ParaDIME project (GA no.318693), the Na-
tional Science Foundation (CCF-1218323, CNS-1302260,
CCF-1438992, and CCF-1533885), Google, and the Univer-
sity of Wisconsin (Kellett award and Named professorship
to Hill). Karakostas is also supported by an FPU research
grant from the Spanish MEC. Hill has a significant financial
interest in AMD.

9. REFERENCES
[1] “Huge Pages Part 1 (Introduction),” http://lwn.net/Articles/374424/.
[2] “Intel Strongarm Processor,” www.intel.com/design/pca/ application-

sprocessors/1110_brf.htm.
[3] “Pagemap, from the userspace perspective,”

https://www.kernel.org/doc/Documentation/vm/pagemap.txt.
[4] “Sh-3 RISC Processor family,” http://www.hitachi-

eu.com/hel/ecg/products/micro/32bit/sh_3.html.
[5] “Transparent Huge Pages in 2.6.38,” http://lwn.net/Articles/423584/.
[6] Advance Micro Devices, Software Optimization Guide for AMD Fam-

ily 15h Processors, 2014, no. 47414.
[7] K. Albayraktaroglu, A. Jaleel, X. Wu, M. Franklin, B. Jacob,

C.-W. Tseng, and D. Yeung, “BioBench: A Benchmark Suite of
Bioinformatics Applications,” in Proceedings of the 2005 IEEE
International Symposium on Performance Analysis of Systems and
Software, pp. 2–9, 2005.

[8] D. H. Albonesi, “Selective Cache Ways: On-demand Cache
Resource Allocation,” in Proceedings of the 32nd Annual ACM/IEEE
International Symposium on Microarchitecture, pp. 248–259, 1999.

[9] R. Balasubramonian, D. Albonesi, A. Buyuktosunoglu, and
S. Dwarkadas, “Memory Hierarchy Reconfiguration for Energy
and Performance in General-purpose Processor Architectures,” in
Proceedings of the 33rd Annual ACM/IEEE International Symposium
on Microarchitecture, pp. 245–257, 2000.

[10] C. Ballapuram, K. Puttaswamy, G. H. Loh, and H.-H. S. Lee,
“Entropy-based Low Power Data TLB Design,” in Proceedings of
the 2006 International Conference on Compilers, Architecture and
Synthesis for Embedded Systems, pp. 304–311, 2006.

[11] C. S. Ballapuram, H.-H. S. Lee, and M. Prvulovic, “Synonymous
Address Compaction for Energy Reduction in Data TLB,” in
Proceedings of the 2005 International Symposium on Low Power
Electronics and Design, pp. 357–362, 2005.

[12] T. W. Barr, A. L. Cox, and S. Rixner, “Translation Caching: Skip,
Don’T Walk (the Page Table),” in Proceedings of the 37th Annual
International Symposium on Computer Architecture, pp. 48–59, 2010.

[13] A. Basu, J. Gandhi, J. Chang, M. D. Hill, and M. M. Swift, “Efficient
Virtual Memory for Big Memory Servers,” in Proceedings of the
40th Annual International Symposium on Computer Architecture, pp.
237–248, 2013.

[14] A. Basu, M. D. Hill, and M. M. Swift, “Reducing Memory Reference
Energy with Opportunistic Virtual Caching,” in Proceedings of the
39th Annual International Symposium on Computer Architecture, pp.
297–308, 2012.

[15] A. Bhattacharjee, “Large-reach Memory Management Unit Caches,”
in Proceedings of the 46th Annual IEEE/ACM International
Symposium on Microarchitecture, pp. 383–394, 2013.

[16] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC
Benchmark Suite: Characterization and Architectural Implications,”
in Proceedings of the 17th International Conference on Parallel
Architectures and Compilation Techniques, pp. 72–81, 2008.

[17] Y. Chang and M. Lan, “Two New Techniques Integrated for
Energy-Efficient TLB Design,” IEEE Trans. VLSI Syst., vol. 15, no. 1,
pp. 13–23, 2007.

[18] J.-H. Choi, J.-H. Lee, S.-W. Jeong, S.-D. Kim, and C. C. Weems, “A
Low Power TLB Structure for Embedded Systems,” Computer Archi-
tecture Letters, vol. 1, 2002.

[19] J. F. Couleur and E. L. Glaser, “Shared-access data processing
system,” Nov. 19 1968, US Patent 3,412,382.

[20] S. Dropsho, A. Buyuktosunoglu, R. Balasubramonian, D. H.
Albonesi, S. Dwarkadas, G. Semeraro, G. Magklis, and M. L.
Scott, “Integrating Adaptive On-Chip Storage Structures for Reduced
Dynamic Power,” in Proceedings of the 2002 International
Conference on Parallel Architectures and Compilation Techniques,
pp. 141–152, 2002.

[21] D. Fan, Z. Tang, H. Huang, and G. R. Gao, “An Energy Efficient
TLB Design Methodology,” in Proceedings of the 2005 International
Symposium on Low Power Electronics and Design, pp. 351–356,
2005.

[22] J. Gandhi, A. Basu, M. D. Hill, and M. M. Swift, “Efficient Memory
Virtualization: Reducing Dimensionality of Nested Page Walks,” in
Proceedings of the 47th Annual IEEE/ACM International Symposium
on Microarchitecture, pp. 178–189, 2014.

[23] P. Hammarlund, “4th Generation Intel Core processor, codenamed
Haswell,” in Proceedings of Hot Chips Symposium, 2013.

[24] H. Hanson, M. S. Hrishikesh, V. Agarwal, S. W. Keckler, and
D. Burger, “Static energy reduction techniques for microprocessor
caches.” IEEE Trans. VLSI Syst., vol. 11, no. 3, pp. 303–313, 2003.

[25] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quan-
titative Approach, 2003.

[26] J. L. Henning, “SPEC CPU2006 Benchmark Descriptions,”
SIGARCH Comput. Archit. News, vol. 34, no. 4, pp. 1–17,
Sep. 2006.

[27] Intel Corporation, “TLBs, Paging-Structure Caches and their Invali-
dation,” 2008, no. 317080-003.

[28] Intel Corporation, “Intel R© 64 and IA-32 Architectures Optimization
Reference Manual,” April 2012, no. 248966-026.

[29] B. Jacob and T. Mudge, “Virtual Memory in Contemporary
Microprocessors,” IEEE Micro, vol. 18, no. 4, pp. 60–75, Jul. 1998.

[30] B. L. Jacob and T. N. Mudge, “A Look at Several Memory Man-
agement Units, TLB-refill Mechanisms, and Page Table Organiza-
tions,” in Proceedings of the 8th International Conference on Archi-
tectural Support for Programming Languages and Operating Systems,
pp. 295–306, 1998.

[31] T. Juan, T. Lang, and J. J. Navarro, “Reducing TLB Power
Requirements,” in Proceedings of the 1997 International Symposium
on Low Power Electronics and Design, pp. 196–201, 1997.

[32] I. Kadayif, A. Sivasubramaniam, M. Kandemir, G. Kandiraju,
and G. Chen, “Generating Physical Addresses Directly for Saving
Instruction TLB Energy,” in Proceedings of the 35th Annual
ACM/IEEE International Symposium on Microarchitecture, pp.
185–196, 2002.

[33] I. Kadayif, P. Nath, M. T. Kandemir, and A. Sivasubramaniam,
“Compiler-directed physical address generation for reducing dTLB
power,” in Proceedings of the 2004 IEEE International Symposium
on Performance Analysis of Systems and Software, pp. 161–168,
2004.

[34] M. Kandemir, I. Kadayif, and G. Chen, “Compiler-directed Code
Restructuring for Reducing Data TLB Energy,” in Proceedings
of the 2Nd IEEE/ACM/IFIP International Conference on Hard-
ware/Software Codesign and System Synthesis, pp. 98–103, 2004.

[35] V. Karakostas, J. Gandhi, F. Ayar, A. Cristal, M. D. Hill,
K. S. McKinley, M. Nemirovsky, M. M. Swift, and O. Unsal,
“Redundant Memory Mappings for Fast Access to Large Memories,”
in Proceedings of the 42nd Annual International Symposium on
Computer Architecture, pp. 66–78, 2015.

[36] V. Karakostas, O. S. Unsal, M. Nemirovsky, A. Cristal, and M. Swift,
“Performance Analysis of the Memory Management Unit under
Scale-out Workloads,” in Proceedings of the 2014 IEEE International
Symposium on Workload Characterization, pp. 1–12, 2014.

[37] H.-H. S. Lee and C. S. Ballapuram, “Energy Efficient D-TLB
and Data Cache Using Semantic-aware Multilateral Partitioning,” in
Proceedings of the 2003 International Symposium on Low Power
Electronics and Design, pp. 306–311, 2003.

[38] S. Li, K. Chen, J. H. Ahn, J. B. Brockman, and N. P. Jouppi,
“CACTI-P: Architecture-level Modeling for SRAM-based Structures
with Advanced Leakage Reduction Techniques,” in Proceedings
of the International Conference on Computer-Aided Design, pp.
694–701, 2011.

[39] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood, “Pin: Building
Customized Program Analysis Tools with Dynamic Instrumentation,”
in Proceedings of the 2005 ACM SIGPLAN Conference on
Programming Language Design and Implementation, pp. 190–200,
2005.

[40] MIPS Technologies, Incorporated, “MIPS32 Architecture for Pro-
grammers Volume iii: The MIPS Privileged Resource Architecture,”
2001, no. MD00090, Revision 0.95.

[41] M.-M. Papadopoulou, X. Tong, A. Seznec, and A. Moshovos,
“Prediction-based superpage-friendly TLB designs,” in Proceedings
of the 21st IEEE International Symposium on High Performance
Computer Architecture, pp. 210–222, 2015.

[42] B. Pham, A. Bhattacharjee, Y. Eckert, and G. H. Loh, “Increasing
TLB reach by exploiting clustering in page translations,” in Proceed-
ings of the 20th IEEE International Symposium on High Performance
Computer Architecture, pp. 558–567, 2014.

[43] B. Pham, V. Vaidyanathan, A. Jaleel, and A. Bhattacharjee, “CoLT:
Coalesced Large-Reach TLBs,” in Proceedings of the 45th Annual
IEEE/ACM International Symposium on Microarchitecture, pp.
258–269, 2012.

[44] M. Powell, S.-H. Yang, B. Falsafi, K. Roy, and T. N. Vijaykumar,
“Gated-vdd: A circuit technique to reduce leakage in deep-submicron
cache memories,” in Proceedings of the 2000 International
Symposium on Low Power Electronics and Design, pp. 90–95, 2000.

[45] D. Quintero, S. Chabrolles, C. H. Chen, M. Dhandapani, T. Holloway,
C. Jadhav, S. K. Kim, S. Kurian, B. Raj, R. Resende, B. Roden,
N. Srinivasan, R. Wale, W. Zanatta, and Z. Zhang, “IBM Power
Systems Performance Guide Implementing and Optimizing,” 2013.

[46] M. K. Qureshi and Y. N. Patt, “Utility-Based Cache Partitioning: A
Low-Overhead, High-Performance, Runtime Mechanism to Partition
Shared Caches,” in Proceedings of the 39th Annual IEEE/ACM
International Symposium on Microarchitecture, pp. 423–432, 2006.

[47] A. Seyedi, V. Karakostas, S. Cosemans, A. Cristal, M. Nemirovsky,
and O. S. Unsal, “NEMsCAM: A novel CAM cell based on nano-
electro-mechanical switch and CMOS for energy efficient TLBs,”
in Proceedings of the 2015 IEEE/ACM International Symposium on
Nanoscale Architectures, pp. 51–56, 2015.

[48] M. Shah, R. Golla, G. Grohoski, P. Jordan, J. Barreh, J. Brooks,
M. Greenberg, G. Levinsky, M. Luttrell, C. Olson, Z. Samoail,
M. Smittle, and T. Ziaja, “Sparc T4: A Dynamically Threaded
Server-on-a-Chip,” IEEE Micro, vol. 32, no. 2, pp. 8–19, Mar. 2012.

[49] A. Sodani, “Race to Exascale: Opportunities and Challenges,” in MI-
CRO Keynote, 2011.

[50] M. Talluri and M. D. Hill, “Surpassing the TLB Performance of
Superpages with Less Operating System Support,” in Proceedings
of the 6th International Conference on Architectural Support for
Programming Languages and Operating Systems, pp. 171–182, 1994.

[51] M. Talluri, S. Kong, M. D. Hill, and D. A. Patterson, “Tradeoffs
in Supporting Two Page Sizes,” in Proceedings of the 19th Annual
International Symposium on Computer Architecture, pp. 415–424,
1992.

[52] D. A. Wood, S. J. Eggers, G. Gibson, M. D. Hill, and J. M. Pendleton,
“An In-cache Address Translation Mechanism,” in Proceedings of
the 13th Annual International Symposium on Computer Architecture,
pp. 358–365, 1986.

[53] J. Xue and M. Thottethodi, “PreTrans: Reducing TLB CAM-search
via Page Number Prediction and Speculative Pre-translation,” in
Proceedings of the 2013 International Symposium on Low Power
Electronics and Design, pp. 341–346, 2013.

