
Exploiting Page Table Locality for
Agile TLB Prefetching

Georgios Vavouliotis∗†
georgios.vavouliotis@bsc.es

Lluc Alvarez∗†
lluc.alvarez@bsc.es

Vasileios Karakostas‡
vkarakos@cslab.ece.ntua.gr

Konstantinos Nikas‡
knikas@cslab.ece.ntua.gr

Nectarios Koziris‡
nkoziris@cslab.ece.ntua.gr

Daniel A. Jiménez§
djimenez@acm.org

Marc Casas∗†
marc.casas@bsc.es

∗Barcelona Supercomputing Center †Universitat Politècnica de Catalunya
‡ National Technical University of Athens §Texas A&M University

Abstract— Frequent Translation Lookaside Buffer (TLB)
misses incur high performance and energy costs due to page
walks required for fetching the corresponding address transla-
tions. Prefetching page table entries (PTEs) ahead of demand
TLB accesses can mitigate the address translation performance
bottleneck, but each prefetch requires traversing the page table,
triggering additional accesses to the memory hierarchy. There-
fore, TLB prefetching is a costly technique that may undermine
performance when the prefetches are not accurate.

In this paper we exploit the locality in the last level of the page
table to reduce the cost and enhance the effectiveness of TLB
prefetching by fetching cache-line adjacent PTEs “for free”. We
propose Sampling-Based Free TLB Prefetching (SBFP), a dynamic
scheme that predicts the usefulness of these “free” PTEs and
prefetches only the ones most likely to prevent TLB misses. We
demonstrate that combining SBFP with novel and state-of-the-
art TLB prefetchers significantly improves miss coverage and
reduces most memory accesses due to page walks.

Moreover, we propose Agile TLB Prefetcher (ATP), a novel
composite TLB prefetcher particularly designed to maximize the
benefits of SBFP. ATP efficiently combines three low-cost TLB
prefetchers and disables TLB prefetching for those execution
phases that do not benefit from it. Unlike state-of-the-art TLB
prefetchers that correlate patterns with only one feature (e.g.,
strides, PC, distances), ATP correlates patterns with multiple
features and dynamically enables the most appropriate TLB
prefetcher per TLB miss.

To alleviate the address translation performance bottleneck, we
propose a unified solution that combines ATP and SBFP. Across
an extensive set of industrial workloads provided by Qualcomm,
ATP coupled with SBFP improves geometric speedup by 16.2%,
and eliminates on average 37% of the memory references due
to page walks. Considering the SPEC CPU 2006 and SPEC
CPU 2017 benchmark suites, ATP with SBFP increases geometric
speedup by 11.1%, and eliminates page walk memory references
by 26%. Applied to big data workloads (GAP suite, XSBench),
ATP with SBFP yields a geometric speedup of 11.8% while
reducing page walk memory references by 5%. Over the best
state-of-the-art TLB prefetcher for each benchmark suite, ATP
with SBFP achieves speedups of 8.7%, 3.4%, and 4.2% for the
Qualcomm, SPEC, and GAP+XSBench workloads, respectively.

I. INTRODUCTION

In paging-based virtual memory systems each memory
access requires a translation from the virtual to the physical
address space. To do so, the processor looks for the translation
in the Translation Lookaside Buffer (TLB). On a TLB miss,

the processor traverses the page table to find the missing trans-
lation, incurring significant latency and additional memory
accesses. Hence, address translation significantly contributes to
the total number of memory accesses, especially in workloads
with large memory footprints and low locality [1]–[5].

Prior work has quantified the cost of TLB performance [6]–
[9] and has proposed approaches to mitigate the overheads of
address translation. These approaches mainly fall into three
categories: (i) increasing TLB reach by introducing hardware
and OS support [6], [10]–[15], (ii) reducing the latency of
TLB misses [7], [16]–[21], and (iii) reducing TLB misses by
prefetching Page Table Entries (PTEs) [22]–[25]. In this paper
we focus on the last category, TLB prefetching, that operates at
the microarchitecture level, is independent of the system state,
relies only on the memory access pattern of the application,
and does not disrupt the existing virtual memory subsystem.

Prior TLB prefetching mechanisms [22]–[24] always trigger
a page walk in the background to prefetch a PTE. Since page
walks incur additional memory references, TLB prefetching
might hurt performance if the prefetched PTEs are not con-
sumed by future TLB accesses. Although TLB prefetching
can reduce the number of TLB misses, the large number
of additional memory references it triggers can undermine
its potential for performance improvement and increase the
energy consumption of the system.

This paper exploits the locality of PTEs in the last level of
the page table to improve the performance of TLB prefetching
while reducing its cost in terms of memory accesses and
energy consumption. Thanks to page table locality, contiguous
PTEs are stored within the same cache line at the end of each
page walk. Prior work leverages page table locality [12], [13],
[26], [27] to increase TLB reach and reduce page walks, but
does not exploit it to enhance the performance and reduce
the cost of TLB prefetching. We demonstrate that naively
prefetching all neighboring PTEs into a TLB prefetch queue
after a page walk results in sub-optimal performance gains. In
response, we propose Sampling-Based Free TLB Prefetching
(SBFP), a dynamic scheme that predicts through sampling
which of these neighboring PTEs are more likely to prevent
future TLB misses and fetches them into a TLB prefetch

85

2021 ACM/IEEE 48th Annual International Symposium on Computer Architecture (ISCA)

978-1-6654-3333-4/21/$31.00 ©2021 IEEE
DOI 10.1109/ISCA52012.2021.00016



queue. We highlight that SBFP can be combined with any
TLB prefetcher to achieve notable performance enhancements
while reducing the memory footprint of page walks and the
energy consumption of address translation.

Moreover, this paper proposes Agile TLB Prefetcher (ATP),
a composite TLB prefetcher particularly designed to exploit
the benefits of SBFP. The design of ATP is driven by our
analysis findings which indicate that no single state-of-the-
art TLB prefetcher performs best among all the applications,
and some workloads do not benefit from TLB prefetching due
to irregular patterns. Unlike state-of-the-art TLB prefetchers
that correlate patterns with only one feature (e.g., strides,
PC, distances), ATP combines three low-cost TLB prefetchers
and adapts its prefetching strategy depending on the memory
access pattern of the application. To do so, ATP relies on
two mechanisms: (i) logic that dynamically selects the most
appropriate TLB prefetcher in terms of both the accuracy of
the prefetched PTE and also the usefulness of its correspond-
ing free prefetches selected by the SBFP scheme, and (ii) an
adaptive throttling mechanism that disables TLB prefetching
during phases that do not benefit from it.

In summary, this paper makes the following contributions:
• We evaluate the state-of-the-art TLB prefetchers using

industrial workloads provided by Qualcomm [28], the
SPEC CPU 2006 [29] and SPEC CPU 2017 [30] bench-
mark suites, the GAP suite [31], and XSBench [32].

• We propose Sampling-Based Free TLB Prefetching
(SBFP), a dynamic scheme that exploits page table local-
ity by predicting which of the adjacent PTEs present in a
64B cache line are most likely to save future TLB misses
and prefetch them into a TLB buffer. We demonstrate
that combining SBFP with novel and state-of-the-art TLB
prefetchers provides great performance benefits.

• We propose Agile TLB Prefetcher (ATP), a compos-
ite TLB prefetcher that combines three low-cost TLB
prefetchers and maximizes the impact of SBFP. ATP
introduces adaptive selection and throttling schemes to
enable the most appropriate TLB prefetcher per TLB miss
while disabling TLB prefetching when it is not helpful.

• We propose a unified solution that combines ATP and
SBFP. This approach yields a geometric speedup of
16.2%, 11.1%, and 11.8% with 37%, 26%, and 5%
average reduction of page walk memory references for the
Qualcomm, SPEC, and Big Data (GAP+XSBench) work-
loads over no TLB prefetching, respectively. Over the best
state-of-the-art TLB prefetcher for each benchmark suite,
ATP coupled with SBFP improves performance by 8.7%,
3.4%, and 4.2% for the Qualcomm, SPEC, and Big Data
workloads, respectively.

II. BACKGROUND

A. Virtual Memory Subsystem
In paging-based virtual memory systems each memory

operation requires a translation from virtual to physical address
space. Modern systems provide software and hardware archi-
tectural support to reduce the address translation overheads.

0xA0
0xA0

PML4 PDP PD PT Page SE

0xA1 0xA2 0xA3 0xA4 0xA5 0xA6 0xA7

cache line size = 64 bytes 

64
 b

yt
es

PML4E

PTE of 0XA0
PTE of 0XA1
PTE of 0XA2
PTE of 0XA3
PTE of 0XA4
PTE of 0XA5
PTE of 0XA6
PTE of 0XA7

PTE of
0xA0

PTE of
0xA1

PTE of
0xA2

PTE of
0xA3

PTE of
0xA4

PTE of
0xA5

PTE of
0xA6

PTE of
0xA7

CR3

LLC
L1C

offset offset offset offset offset 

PDPE
PDE

L2C

Fig. 1: Page table locality on a x86-64 page table walk.

On the software side, the Page Table is an OS-managed
structure that contains the virtual-to-physical mappings of
all pages loaded to main memory. The x86-64 architecture
implements a four-level radix tree page table [33] with levels
named PML4, PDP, PD, and PT from root to leaves.1

On the hardware side, the Memory Management Unit
(MMU) accelerates address translation through the TLB and
the MMU-Caches. TLBs cache the most recently used address
translations. For each memory access, the TLB is searched
for the translation. On a TLB hit, the requested translation is
transferred to the CPU. On a TLB miss, a page walk traverses
the page table to find the requested translation, introducing one
reference to the memory hierarchy per page table level. The
MMU-Caches (called Page Structure Caches (PSCs) in x86
[35]) avoid some of these references to the memory hierarchy
by caching intermediate levels of the page table [7], [18].
The references that miss in the MMU-Caches look for the
corresponding translation entries in the memory hierarchy (L1,
L2, LLC, DRAM). Hence, the page walk latency depends on
the locality in the MMU-Caches and the cache hierarchy.

Modern processors implement multi-level TLBs. Last level
TLB misses account for the majority of cycles spent in the
TLB miss handler [6], [7], [36]. For the rest of the paper, we
use TLB to refer to the last level TLB unless stated otherwise.

B. Page Table Locality

Figure 1 depicts how a page walk is performed in x86-64
architectures and illustrates the locality of the PTEs in the
last level of the page table. PTEs are stored contiguously
in memory, and each PTE occupies 8 bytes, so a single
cache line can store 8 PTEs. When the requested PTE is
read from memory at the end of a page walk, it is grouped
with 7 neighboring PTEs and they are stored into a single
64-byte cache line. Hence, a cache line holds the requested
address translation plus 7 more PTEs that do not require
additional memory operations to be prefetched. Note that these
neighboring PTEs are contiguous in both virtual and physical
address spaces, but they may point to non-contiguous physical
pages (depending on the system state, fragmentation).

C. TLB Prefetching

TLB misses trigger page walks that incur significant latency
overheads. Prefetching PTEs ahead of demand accesses is an
effective approach to mitigate the latency of TLB misses. TLB

1Some vendors support a five-level radix tree page table [34].

86



v@ M M

H

Demand Page Walk add to TLB
return to CPU

.

enable
return to

Demand add to TLB
return to CPU

Page Walk

CPU Prefetch
Page Walk

add to PQ

enable

H

.

...

PQ

Prefetch
Logic

...

L2 TLB .

Fig. 2: System with TLB prefetching. Diamonds indicate
decision points, circles indicate actions.

prefetching schemes typically use a Prefetch Queue (PQ), a
small buffer (e.g., 16-64 entries) that holds the prefetched
PTEs to avoid polluting the TLB content [23], [37]–[39].

Figure 2 shows the operation of a system that uses a TLB
prefetcher. On a memory access, the TLB is initially looked
up. On a TLB miss, the requested PTE is looked up in the PQ.
If the translation is found in the PQ, the corresponding entry is
stored in the TLB, the page walk is avoided, and the processor
replays the request. If the PQ does not have the translation, a
demand page walk is triggered to fetch it from the page table.
The TLB prefetching scheme is activated and produces new
prefetches when a TLB miss occurs. For each prefetch request,
a prefetch page walk is triggered in the background. At the
end of a prefetch page walk, the prefetched PTE is stored in
the PQ. Before issuing new prefetches, TLB prefetchers check
whether the corresponding prefetches already reside in the PQ.
If so, the corresponding prefetch requests are canceled. Finally,
only non-faulting prefetches are permitted.

D. State-of-the-Art TLB Prefetchers

Sequential Prefetcher (SP). SP [23], [40] prefetches the PTE
located next to the one that triggered the TLB miss.

Arbitrary Stride Prefetcher (ASP). ASP [23] is a table-based
TLB prefetcher that captures varying strides patterns. Each
prediction table entry has four fields: the PC for indexing, the
previous page that caused a TLB miss while accessed by that
PC, the stride, and a state describing whether the stride has
been unchanged for at least two consecutive table hits.

On a TLB miss, ASP looks up the prediction table for
possible hits. On a table miss, the PC is stored in the first
field of the corresponding entry, the stride field is invalided,
and the counter of the state field is reset. On a table hit, ASP
updates the stride field using the current and previous missing
pages. If there is no change in the stride field, the counter
of the state field is increased; otherwise, it is reset. In case
of either table hit or miss, the current page is stored in the
second field of the entry. Finally, a prefetch takes place only
when the counter of the state field is greater than two.

Distance Prefetcher (DP). DP [23] is a table-based TLB
prefetcher that correlates miss patterns with distances between
virtual pages that produce consecutive TLB misses. Each pre-
diction table entry has three fields: the corresponding distance
for indexing, and two predicted distances.

On a TLB miss, DP computes the distance considering the
current and the previous missing virtual pages. On a table hit,
DP issues two prefetches using the current missing page and
the predicted distances contained in the second and the third
fields of the hit entry. Otherwise, a new entry is inserted in
the prediction table. In case of either table hit or miss, the

sp
hi

nx
3

Gem
s

xa
la
n_

s

xa
la
n

gc
c

m
ilc

m
cf

_s

om
ne

t_
s

om
ne

t

as
ta

r
m

cf

ca
ct

us

GM
_S

PE
C

GM
_Q

M
M

GM
_B

D
0

5

10

15

20

25

30

%
 

sp
e
e
d

u
p

PTE Locality

No TLB Prefetcher SP DP ASP Perfect TLB

0

50

100
40 79

Fig. 3: Performance of SP, ASP, DP and Perfect TLB with
and without exploiting PTE locality.

entry corresponding to the previous TLB miss is updated by
inserting the distance between the current and previous missing
pages in the least recently used prediction entry.

III. MOTIVATION

This section motivates the need for new TLB prefetching
approaches and highlights the potential performance improve-
ments when PTE locality is exploited by the state-of-the-art
TLB prefetchers2 (Section II-D), using a 64-entry PQ. To
demonstrate the benefits of PTE locality on TLB prefetching,
we enhance all the state-of-the-art TLB prefetchers with an
unbounded PQ to store all the available PTEs in the cache line
returned at the end of each page walk (demand and prefetch).
We also consider the case where no TLB prefetcher is used but
PTE locality is exploited by storing the available PTEs in the
PQ on demand page walks, and an idealized scenario; a Perfect
TLB where all the accesses are hits. This evaluation considers
industrial workloads provided by Qualcomm (QMM) [28], the
SPEC CPU 2006 [29] and SPEC CPU 2017 [30] suites, the
GAP [31] suite, and the XSBench [32]. We refer to GAP and
XSBench as Big Data (BD) workloads. Section VII explains
in detail our experimental setup and the considered workloads.

Our motivational analysis draws the following key findings.
1. TLB prefetching has the potential to improve perfor-

mance. Figure 3 shows the performance delivered by the
state-of-the-art TLB prefetchers, the Perfect TLB, and the
scenario that uses an unbounded PQ to exploit PTE locality.
The speedups are computed over no TLB prefetching. Without
exploiting PTE locality SP, DP, ASP, and Perfect TLB yield
a geometric speedup of 4.5%, 4.2%, 7.6%, and 20% for the
SPEC, 7.5%, 6.1%, 4.8%, and 40% for the QMM, and 3.7%,
7.6%, 0.5%, and 79% for the BD workloads, respectively. The
performance of Perfect TLB reveals large room for improving
TLB performance, especially for the QMM and BD workloads.

2. There exists no single TLB prefetcher that performs best
across all workloads. Figure 3 also reveals that, for bench-
marks showing irregularly distributed stride TLB miss patterns
(e.g., cactus), ASP and DP outperform SP. By contrast, for
benchmarks with sequential TLB miss patterns (e.g., sphinx3),

2We set the configuration parameters of the state-of-the-art TLB prefetchers
as proposed in the original papers.

87



Q
M

M
S

P
E
C

B
D

Q
M

M
S

P
E
C

B
D

Q
M

M
S

P
E
C

B
D

Q
M

M
S

P
E
C

B
D

Q
M

M
S

P
E
C

B
D

Q
M

M
S

P
E
C

B
D

Q
M

M
S

P
E
C

B
D

Q
M

M
S

P
E
C

B
D0

25
50
75

100
125
150
175
200

%
 n

o
rm

a
liz

e
d

m
e
m

o
ry

 r
e
fe

re
n
ce

s Without PTE Locality

With PTE Locality

Arithmetic Mean

NoPref SP DP ASP

Fig. 4: Normalized memory references due to page walks.

SP outperforms ASP and DP due to conflicts in their prediction
tables. These conflicts force ASP and DP to discard the
captured stride patterns and, once the execution shows again
a regular pattern, they require several TLB misses to identify
again the strides. Moreover, SP, ASP, and DP cannot capture
highly irregular patterns (e.g., mcf). Although SP, ASP, and DP
are ineffective in these irregular scenarios, they trigger a large
number of prefetch page walks to serve inaccurate prefetches.

3. Exploiting PTE locality for TLB prefetching purposes has
the potential to significantly improve performance. Figure 3
depicts that all state-of-the-art TLB prefetchers and the sce-
nario without TLB prefetcher provide large performance gains
when exploiting PTE locality. Greater performance is reported
when using TLB prefetchers because the scenario without TLB
prefetcher exploits PTE locality only on demand page walks,
while TLB prefetchers also issue prefetch page walks, thus
they further exploit PTE locality on prefetch page walks.

4. TLB prefetching induces additional references to the
memory hierarchy. Figure 4 presents the number of memory
references caused by page walks (demand plus prefetch) for
SP, DP, ASP, and the scenario without TLB prefetcher (No-
Pref). The term memory reference refers to a page walk
reference that is served by the memory hierarchy (L1, L2,
LLC, DRAM) since our methodology takes into account
cache locality in page walks (Section VII). All scenarios are
evaluated with and without exploiting the PTE locality. The
normalization factor, 100% in Figure 4, is the total number
of memory references without TLB prefetching. Without ex-
ploiting PTE locality SP, DP, and ASP burden the system with
63%, 36%, and 1% additional memory references compared to
no TLB prefetching, respectively, for the BD workloads. ASP
keeps low the memory reference overhead due to the state
field of its prediction table which ensures that only accurate
prefetches will be issued. We observe similar behavior for the
SPEC and the QMM workloads.

5. Exploiting PTE locality reduces page walk memory ref-
erences. Figure 4 shows that, when PTE locality is exploited,
the number of memory references due to page walks is
significantly reduced. SP achieves a higher reduction than the
other TLB prefetchers because it issues prefetch requests using
the +1 stride, which are likely to already be fetched in the PQ
due to PTE locality. DP and ASP use larger strides, slightly
reducing the impact of PTE locality on them.

The reported improvements of exploiting PTE locality for
TLB prefetching purposes assume an ideal and indefinitely
large PQ. However, TLB prefetching is fundamentally limited
by the PQ size due to latency and area overheads. Therefore,
combining PTE locality exploitation with TLB prefetching in
the context of a properly sized PQ requires a smart method to
select the most useful PTEs per page walk.

IV. SAMPLING-BASED FREE TLB PREFETCHING (SBFP)

This section proposes Sampling-Based Free TLB Prefetch-
ing (SBFP), a dynamic scheme that exploits page table locality
to reduce the cost and improve the effectiveness of TLB
prefetching. SBFP uses sampling to predict which of the
cache-line adjacent PTEs are more likely to prevent future
TLB misses and fetches them into the TLB Prefetch Queue
(PQ). Moreover, SBFP reduces the negative impact of prefetch
page walks, it can be combined with any TLB prefetcher, and
it can operate on both demand and prefetch page walks.

A. Pushing the Envelope on Free TLB Prefetching

As described in Section II-B, 7 PTEs that are “free”, i.e.,
they do not require any additional memory operations to be
prefetched, are stored in the cache hierarchy at the end of each
page walk. The naive approach is to prefetch all available free
PTEs into the TLB PQ. However, TLB prefetching is limited
by the size of the PQ, the cost of PQ lookups, and the PQ area
overhead. Thus, naively storing all available free prefetches per
page walk into the PQ may limit the performance benefits by
evicting useful prefetches and polluting the PQ with inaccurate
prefetches (evaluated in Section VIII-A). Therefore, to exploit
the benefits of page table locality with a realistic PQ size,
a scheme that dynamically identifies and prefetches only
the useful free PTEs per page walk is required. To address
this need, we design Sampling-Based Free TLB Prefetching
(SBFP), a dynamic scheme that predicts via sampling the
usefulness of the free PTEs per page walk and fetches in the
PQ only the most likely ones to save future TLB misses.

B. SBFP Design

We define free distance as the distance, within the cache
line, between the PTE that holds the demand translation and
another PTE that can be obtained for free. Depending on the
position of the requested PTE in the cache line, there are 14
possible free distances: from -7 to +7, excluding 0.

1) Design Overview: The SBFP scheme associates each
free PTE with a free distance and leverages this information
to predict the usefulness of the corresponding PTEs. Figure 5
presents the components and the functionality of the SBFP
module: the Sampler, the Free Distance Table (FDT), and the
Prefetch Queue (PQ). The Sampler is a small buffer that is
responsible for detecting phases when free distances, which
were previously useless, can provide useful prefetches. To
do so, each Sampler entry stores the virtual page and its
corresponding free distance for every free PTE that is decided
not to be placed in the PQ. The decision whether to place a
free PTE into the PQ or the Sampler is made by the FDT, a

88



pte of
0xA0

FD
T C-6 C-4C-7 C-5

>thr

0xA4

0xA5

0xA0
0xA6

0xF1

0xF6

0xF2

+3

+1

+2

-3

virtual
page

free
distance

0xA7 +4

P
Q

S
am

pl
er0xA1

0xA2

>thr >thr >thr >thr >thr >thrNo No No No No No No

Yes Yes Yes Yes Yes Yes Yes

-2
-1

virtual physical
page page

free
distance

pte of
0xA1

pte of
0xA2

pte of
0xA3

pte of
0xA4

pte of
0xA5

pte of
0xA6

pte of
0xA7

C-2 C+1 C+3 C+6C-1 C+2 C+4 C+5 C+7C-3

Fig. 5: Sampling-based free TLB prefetching mechanism.

table composed of 14 saturating counters. Each FDT counter
monitors the hit ratio of one free distance. Finally, the PQ is a
fully associative buffer that stores the virtual page, the physical
page and the corresponding free distance of the prefetches.

2) Operation: To explain the operation of SBFP, we con-
sider the example presented in Figure 5 that assumes a page
walk triggered for virtual page 0xA3. At the end of the
corresponding page walk, we identify the position of the
requested PTE inside the cache line by extracting the 3 least
significant bits of the page, thus the PTE of 0xA3 resides in
position 4 within the cache line. Then we calculate the free
distances of all PTEs residing in the same cache line and we
associate each PTE with a free distance (e.g., the PTE of 0xA2
is associated with free distance -1).

To determine whether a free prefetch has to be placed
in the PQ or the Sampler, we compare the FDT counter
corresponding to its free distance with a threshold. If the
counter exceeds the threshold, the free prefetch is fetched
in the PQ; otherwise, is placed in the Sampler. Specifically,
the PTE of 0xA2 has free distance -1, thus we compare
the saturating counter of the FDT that corresponds to free
distance -1 (C−1) with a threshold to determine if the PTE
of 0xA2 should be placed in the PQ or in the Sampler. The
same procedure is followed for each free PTE in the cache
line. Since PTEs only contain physical addresses, their virtual
page numbers must be computed before inserting them in
the PQ or the Sampler; the virtual page numbers of the free
prefetches are computed as the virtual page number of the
demand translation plus their corresponding free distance.

When a PQ or Sampler hit occurs, the FDT counter that
corresponds to the free distance of the hit entry is increased.
For instance, in case of PQ or Sampler hit caused by a prefetch
that was associated with free distance -5, we simply increment
the FDT counter C−5. To prevent permanent saturation, we use
a decay scheme that shifts right one bit all the FDT counters
when one of the FDT counters saturates.

To summarize, SBFP adjusts the values of FDT counters
depending on which free distances are frequently producing
PQ or Sampler hits, which makes SBFP capable of predicting
the most useful free PTEs per page walk. Note that the
Sampler is searched only on PQ misses, so its lookup is not

v@
PQ

Sampler

Generic TLB

enable

.M

 background

 critical path

.. .

.

  Demand
Page Walk

Update
   FDT

Prefetching

. .

.

. store to TLB
return to CPU

Mechanism

 Prefetch Page Walk

12

...   Prefetch
Page Walk .

.11

store to PQ

1 2
M

H H
H

3

4

5

6

7 8

9
10

11 12

13

14
return to
    CPU

L2 TLB

...

...
)

  SBFP
Module

fr
ee

 P
T

Es

store to
Sampler

store to
PQ

  SBFP
Module

fr
ee

 P
T

Es

store to
Sampler

store to
PQ

Fig. 6: Combining SBFP with a generic TLB prefetcher
Diamonds indicate decision points, circles indicate actions.

placed in the critical path. Our experiments indicate that a FDT
composed of 10-bit counters and a 64-entry fully associative
Sampler using the FIFO replacement policy are good design
points. Finally, the threshold used for determining if a free
PTE should be placed in the PQ or the Sampler is 100.

3) Insights on the Effectiveness of SBFP: Modern work-
loads typically operate on multiple data structures that might
favor different sets of free distances. Having perfect knowledge
of the most useful free distances per data structure would
require a separate FDT per each structure, incurring high com-
plexity and area costs. Alternatively, we propose a generalized
SBFP that learns from any stream of accesses and uses a decay
mechanism to ensure that only useful free distances will be
used. We evaluated the ideal scenario that uses a different
FDT per PC that produces at least one TLB miss, and we
observed modest performance gains over the generalized FDT
that are not worth the required complexity. Once the counters
of the generalized FDT saturate, the decay mechanism lowers
their values to increase their sensitivity to new data structures.
Finally, our analysis indicates that 10-bit counters saturate fast
enough to capture the transitions across data structures.

C. Combining SBFP with TLB Prefetching Schemes

This section demonstrates that SBFP can be combined with
any TLB prefetching scheme to exploit the benefits of page
table locality on both demand and prefetch page walks. To do
so, we consider a system that uses a generic TLB prefetching
module as well as SBFP. Figure 6 shows in steps the operation
of this system, pointing out the interaction between SBFP and
the TLB prefetcher. Note that the TLB prefetcher and the
SBFP use a shared PQ to store the prefetch requests.

On a TLB miss 1 , the requested translation is looked
up in the PQ. On PQ misses 2 , a demand page walk is
initiated to fetch the translation 3 . In the background, we
look up in the Sampler for possible hits. On Sampler hits 4 ,
we increment the FDT counter that corresponds to the free
distance of the hit entry 5 . When the demand page walk
finishes, the SBFP scheme operates and decides which free
PTEs should be placed in the PQ and the Sampler, as explained
in Section IV-B 6 . On PQ hits 7 , the demand page walk is

89



avoided, the translation is transferred to TLB 8 , and if the hit
was produced by a free prefetch we increment the FDT counter
that corresponds to the free distance of the hit entry 9 . In
either case of PQ hit or miss, the TLB prefetcher is activated
10 , producing new prefetches 11 . Each prefetch triggers a
prefetch page walk to fetch the corresponding translation 12 .
At the end of each prefetch page walk the prefetched PTE is
grouped with 7 PTEs that can be prefetched for free due to
page table locality. At this point, SBFP is again activated to
decide which of the free prefetches should be placed in the
PQ or the Sampler, essentially applying lookahead prefetching
13 . Finally, the prefetched PTEs are stored in the PQ 14 .

To elaborate more on the operation of SBFP when combined
with a TLB prefetcher, we consider the following example: the
system experiences a TLB miss on virtual page 0xA3 which
also misses in the PQ. As a result, a demand page walk is
initiated to fetch the corresponding PTE. When the page walk
finishes, SBFP compares the FDT counters with a threshold
to identify the most useful free distances for the current miss.
Assuming that only free distance -1 exceeds the threshold,
SBFP fetches in the PQ the PTE of page 0xA2 (0xA3-1) while
the other free PTEs are stored in the Sampler. Next, we further
assume that the TLB prefetcher issues a prefetch request for
page 0xB7. Similarly, SBFP places the PTE of 0xB6 (0xB7-1)
in the PQ while the other free PTEs are stored in the Sampler.

The bottom line is that SBFP can be combined with any
TLB prefetcher. Section VIII-A highlights that enhancing
state-of-the-art TLB prefetchers with SBFP significantly im-
proves their effectiveness. Finally, in Section V we design a
TLB prefetcher aimed at maximizing the benefits of SBFP.

V. AGILE TLB PREFETCHER (ATP)

This section introduces Agile TLB Prefetcher (ATP), a
novel composite TLB prefetcher, implemented as a decision
tree. Unlike state-of-the-art TLB prefetchers (Section II-D)
that correlate patterns with one feature (e.g., constant strides,
PC, distances between pages that produce consecutive TLB
misses), ATP captures patterns that correlate well with differ-
ent features by combining three low-cost TLB prefetchers. To
do so, ATP utilizes adaptive selection and throttling schemes
to dynamically enable the most appropriate TLB prefetcher
and disable TLB prefetching when it is not helpful.

A. ATP Design

Design overview: Figure 7 (left) depicts the hardware com-
ponents of ATP; three TLB prefetchers (P0, P1, and P2) and
a single Prefetch Queue (PQ) shared among them. Moreover,
ATP requires modest additional logic for the selection and
throttling mechanisms: (i) a saturating counter ‘enable pref’
for the throttling mechanism, (ii) two saturating counters
‘select 1’, ‘select 2’ that dynamically select the most accurate
TLB prefetcher, and (iii) a Fake Prefetch Queue (FPQ) per
constituent prefetcher, which monitors its accuracy to update
the values of ‘select 1’, ‘select 2’, and ‘enable pref’ accord-
ingly. Each FPQ holds only predicted virtual pages and not
the corresponding address translations; hence, the term fake.

P0's FPQ

.V@

1

M/H

C0

C1

A
T

P
 M

od
ul

e

P0 FPQ

C1

C2

Shared
    PQ

C0: enable_pref      C1: select_1    

.

S
ha

re
d 

P
Q3

4

2

S
el

ec
t 

P
0,

 P
1,

 P
2 

or
 D

.

.

.

.

 P0's
Logic

...

SBFP

...
...

Update FPQs of P0, P1,P2

P0's
FPQ

P1 FPQ

P2 FPQ

C0

C1D

C2

P2

P0

P1

 P1's
Logic

...

SBFP

...
...

P1's
FPQ

 P2's
Logic

...

SBFP

...
...

P2's
FPQ

U
pd

at
e 

C
0,

 C
1,

 C
2 

P0's 
FPQ

Updates

M
M
M
M

M

M

M
M

M

M

M

M

H

H

H

H

H
H

H
H

H
H
H
H C0++

C0++, C2--
C0++, C2++
C0++, C1++
C0++, C1--
C0++, C1--, C2--
C0++, C1--, C2++
C0--

P1's 
FPQ

P2's 
FPQ

M/H

M/H

P1's FPQ

P2's FPQ

C2: select_2      D: disable prefetching

Fig. 7: Design and functionality flowchart of ATP.

Operation: Figure 7 (right) shows step-by-step the operation
of ATP. First, ATP looks for the translation of the missing
virtual page in the FPQs of all constituent TLB prefetchers 1.
Depending on the search outcome, the saturating counters are
updated in step 2. For example, in case of hit in at least one
FPQ, ‘enable pref’ increases its value for issuing new prefetch
requests. Otherwise, ‘enable-pref’ is decreased, i.e., increases
its confidence for disabling TLB prefetching.

Next, ATP uses the updated values of the saturating counters
to make a decision for the current miss. The ‘enable pref’
counter is responsible for choosing whether to enable or
disable TLB prefetching. If the most significant bit of ‘en-
able pref’ is one, the decision is to issue new prefetch re-
quests. In this case, ‘select 1’ is probed to select the individual
TLB prefetcher that will generate prefetches for the current
TLB miss 3. If then the most significant bit of ‘select 1’
is one, the prefetcher residing in the right leaf (P0) is se-
lected; otherwise ‘select 2’ is responsible for selecting which
prefetcher should operate. Likewise, if the most significant
bit of ‘select 2’ is one, prefetcher P2 is selected; otherwise
prefetcher P1 issues prefetches. Finally, if the most significant
bit of ‘enable pref’ is zero no prefetch request will be issued.

Subsequently, we update the content of all FPQs 4. All the
constituent TLB prefetchers store in their own FPQ the virtual
pages corresponding to the prefetches that they would issue if
they were allowed to individually produce prefetches plus the
free prefetches that SBFP would select after the completion of
each fake page walk. Using these “fake prefetches” we track
the usefulness of each TLB prefetcher for future TLB misses.

B. Building Blocks of ATP

ATP is composed of three easily implementable TLB
prefetchers that are presented below.

Stride Prefetcher (STP). STP is a more aggressive version
of SP (Section II-D). STP uses the strides {−2,−1,+1,+2}
for prefetching. On a TLB miss for virtual page A, STP will
prefetch the PTEs of the pages {A−2,A−1,A+1,A+2}.

H2 Prefetcher (H2P). H2P keeps track of the last two
observed distances between virtual pages that cause a TLB
miss. Assuming that d(X,Y ) represents the signed distance
between the pages X and Y , and A, B, and E are the last

90



three virtual pages that caused a TLB miss, H2P will prefetch
the PTEs of the virtual pages: E+d(E,B) and E+d(B,A).

Modified Arbitrary Stride Prefetcher (MASP). MASP is an
evolution of ASP [23], [41]. To issue prefetch requests, ASP
requires two consecutive hits in a certain prediction table entry
to display the same stride. While this policy increases the
accuracy of ASP, it misses prefetching opportunities. Thus,
we design MASP, implementing two modifications to ASP:
(i) the requirement of observing the same stride for at least
twice consecutively is removed, and (ii) a second prefetch
takes place for each TLB miss, using the virtual page and
its corresponding stride. Each entry of the prediction table
of MASP has three fields: the PC for indexing, the previous
virtual page that caused a TLB miss while being accessed by
that PC, and the corresponding stride. Assume a TLB miss for
virtual page A that hits in the prediction table of MASP, where
the respective entry has in the second field the virtual page E
and in the third field the stride +5. MASP will prefetch the
PTEs of the pages A + 5 and A + d(A,E), where d(X,Y )
computes the signed distance between pages X and Y .

Insights on the effectiveness of ATP. ATP enables STP, H2P,
and MASP when the TLB miss stream correlates well with
small strides, the distance between virtual pages that produce
TLB misses, and the PC, respectively. The aggressiveness of
STP and H2P may negatively impact both performance and
number of triggered page walks, as Section VIII-A highlights.
ATP minimizes these negative effects by enabling STP or
H2P only when they are likely to produce accurate prefetches.
When the TLB miss stream exhibits irregular patterns, the
throttling scheme of ATP disables prefetching until it observes
again patterns that are predictable by at least one of its
constituent prefetchers, leveraging the operation of the FPQs.
We assign leaf nodes P0, P1, and P2 to H2P, MASP, and STP,
respectively. Finally, our experiments indicate that 8-bit, 6-bit,
and 2-bit counters are good design points for ‘enable pref’,
‘select 1’, and ‘select 2’, respectively. Each FPQ is a 16-entry
fully associative buffer and uses the FIFO replacement policy.

VI. IMPORTANT CONSIDERATIONS FOR ATP AND SBFP

This section elaborates on important aspects that both ATP
and SBFP take into account when operating in a system.

Impact on Page Replacement Policy. Since prefetches are
speculative events, they should ideally not influence the access
bits of the prefetched pages. However, the memory consistency
model of x86 architectures dictates that TLBs are allowed to
accommodate translations that have their status bits on, i.e.,
all TLB prefetches are obliged to set the access bits. As a
consequence, inaccurate prefetches can negatively affect the
page replacement policy and lead to sub-optimal decisions.
Prior TLB prefetching works do not consider the impact on
the page replacement policy due to the growing memory ca-
pacities. However, with the advent of heterogeneous memories,
the OS has to migrate data between fast and slow memories,
so accurately setting the access bit is very important today.
Section VIII-E shows that our proposal, ATP coupled with
SBFP, has a negligible impact on the page replacement policy.

Component Description
L1 ITLB 64-entry, 4-way, 1-cycle, 4-entry MSHR

L1 DTLB 64-entry, 4-way, 1-cycle, 4-entry MSHR

L2 TLB 1536-entry, 12-way, 8-cycle, 4-entry MSHR, 1 page walk / cycle

Page Structure 3-level Split PSC, 2-cycle.
Caches PML4: 2-entry, fully; PDP: 4-entry, fully; PD: 32-entry, 4-way.

Prefetch Queue (16-64)-entry, fully assoc, 2-cycle

Sampler 64-entry, fully assoc, 2-cycle

L1 ICache 32KB, 8-way, 1-cycle, 8-entry MSHR

L1 DCache 32KB, 8-way, 4-cycle, 8-entry MSHR, next line prefetcher

L2 Cache 256KB, 8-way, 8-cycle, 16-entry MSHR, ip stride prefetcher

LLC 2MB, 16-way, 20-cycle, 32-entry MSHR

DRAM 4GB, tRP=tRCD=tCAS=11

TABLE I: System simulation parameters.

Multiple Page Sizes. Neither ATP nor SBFP require any
modifications to support multiple page sizes. Since the page
size is known after address translation, ATP issues two
prefetch requests per prefetch candidate assuming 4KB and
2MB pages and, when the page granularity is known, one
of the prefetch page walks is discarded. This approach does
not imply additional complexity since modern architectures
support speculative page walks [35]. SBFP checks whether
the free prefetches are valid translation entries before adding
them in the PQ or the Sampler (either valid PT entries or PD
entries), even when PD entries that map 2MB pages are next
to PD entries that point to PT entries. Finally, the PQ is fully
associative, which avoids page size indexing implications [35].

Context Switches. ATP and SBFP leverage small structures
that quickly warm up and are flushed at context switches, so
they do not need to be tagged with address space identifiers.

VII. METHODOLOGY

Workloads. We consider a large set of workloads provided
by Qualcomm (QMM) for CVP1 [28], all the benchmarks
from SPEC CPU 2006 [29] and SPEC CPU 2017 [30] suites,
and big data workloads included in GAP [31] suite and the
XSBench [32]. The QMM set includes industrial workloads.
The GAP suite includes graph processing kernels using five
different input graphs. We report results for the two input
graphs that produce the most TLB intensive combinations per
kernel. XSBench is evaluated using all different grid types,
and we present results for the two most TLB intensive ones.
We refer to GAP and XSBench workloads as Big Data (BD)
workloads because they have massive memory footprints [5].
Workloads with a TLB MPKI rate of at least 1 are considered
TLB intensive and thus taken into account in our evaluation.
After the MPKI selection, our set of workloads includes 125
QMM workloads, 12 SPEC CPU workloads, and 13 BD
workloads. All traces were obtained using the SimPoint [42]
methodology. Each SPEC CPU and BD workload runs 250
million warmup instructions and one billion instructions are
executed to measure the experimental results. For the QMM
workloads we use 50 million warmup instructions and 100
million instructions for measuring the results [43].

Simulation Infrastructure. For evaluation we use Champ-
Sim [44], a detailed simulator that models a 4-wide out-of-

91



Prefetcher Description
SP Static Free Distances: {+1,+3,+5,+7}
DP Distance-table: 64-entry, 4-way. Static Free Distances: {−2,−1,+1,+2}
ASP PC-table: 64-entry, 4-way. Static Free Distances: {−1,+1,+2}
STP Static Free Distances: {+1,+2}
H2P Static Free Distances: {+1,+2,+7}
MASP PC-table: 64-entry, 4-way. Static Free Distances: {+1,+2}

ATP
MASP & STP & H2P prefetchers. Fake PQ: 16-entry, fully assoc.
Static Free Distances: {+1,+2}

TABLE II: Configuration of all TLB prefetchers.

order processor. We extend ChampSim with a realistic page
table walker used in x86 architectures, modeling (i) the variant
latency cost of page walks, (ii) the page walk references to
memory hierarchy, and (iii) the cache locality in page walks,
similar to prior works [25]. Specifically, we simulate a 4-level
page table, a page table walker, and a 3-level split PSC. The
page table walker supports up to 4 concurrent TLB misses,
similar to Skylake microarchitecture [37], while one page walk
can be initiated per cycle. Table I summarizes our setup.

We implement and evaluate the TLB prefetchers explained
in Sections II-D and V. Table II presents their configuration.
Our evaluation focuses on 4KB pages but we also evaluate
large pages in Section VIII-B4. The energy consumption is
measured using CACTI 6.5 [45] with 22nm technology.

VIII. EVALUATION

A. Impact of SBFP

To highlight the benefits of SBFP we compare it against
the following scenarios: (i) free prefetching is not ex-
ploited (NoFP), i.e., free prefetches are not stored in the PQ;
(ii) all free prefetches are naively placed in the PQ (NaiveFP);
(iii) each prefetcher uses its own optimal set of free distances
based on a static offline exploration that identifies the most
useful free distances per TLB prefetcher (StaticFP). To do so,
we explore all possible sets of free distances and measure
the performance of each TLB prefetcher with them. Table II
presents the optimal set of statically selected free distances for
the state-of-the-art and the new TLB prefetchers.

1) Performance: The impact of free TLB prefetching on
system’s performance regarding the above explained scenarios
for the state-of-the-art and the new TLB prefetchers is pre-
sented in Figure 8, assuming a 64-entry PQ. We also comment
on different PQ sizes in the end of this section. The speedup
results are computed over no TLB prefetching.

Figure 8 reveals that all evaluated prefetchers achieve high
performance gains for all scenarios considering free prefetch-
ing (NaiveFP, StaticFP, SBFP) than when free prefetching
is not exploited (NoFP). We observe this behavior because
(i) the free prefetches provide PQ hits that reduce demand
page walks, and (ii) most of the prefetch requests have
already been prefetched for free, avoiding prefetch page walks.
Overall, ATP with SBFP yields a geometric speedup of 16.2%,
11.1%, and 11.8% for the QMM, SPEC, and BD workloads,
respectively. Regarding the TLB MPKI rates, ATP with SBFP
reduces the TLB MPKI from 13.9 to 8.2 (41% reduction) for

Q
M

M

S
P
E
C

B
D

Q
M

M

S
P
E
C

B
D

Q
M

M

S
P
E
C

B
D

Q
M

M

S
P
E
C

B
D

Q
M

M

S
P
E
C

B
D

Q
M

M

S
P
E
C

B
D

Q
M

M

S
P
E
C

B
D

0
2
4
6
8

10
12
14
16
18

%
 
sp

e
e
d
u
p

NoFP NaiveFP StaticFP SBFP

SP DP ASP STP H2P MASP ATP

Fig. 8: Performance impact of free TLB prefetching scenarios.

the QMM, from 3.4 to 1.46 (56% reduction) for the SPEC,
and from 38.9 to 29.2 (25% reduction) for the BD workloads.

Next, we compare ATP with SBFP, with the best state-
of-the-art TLB prefetcher (it is not always the same across
benchmark suites and scenarios that exploit free prefetching).
ATP with SBFP outperforms the best state-of-the-art TLB
prefetcher with NoFP by 8.7%, 3.4%, and 4.2% for the
QMM, SPEC, and BD workloads, respectively. In addition,
ATP with SBFP improves performance over the best state-
of-the-art TLB prefetcher with NaiveFP by 4.6%, 3.4%, and
1.6% for the QMM, SPEC, and BD workloads, respectively.
Finally, ATP with SBFP outperforms the best state-of-the-art
TLB prefetcher with StaticFP by 5.4%, 1.4%, and 2.1% for
the QMM, SPEC, and BD workloads, respectively.

Figure 8 shows that NaiveFP outperforms StaticFP for
the QMM and BD workloads. For the SPEC workloads the
opposite behavior is observed. This happens because the static
selection always uses the overall most useful free distances
based on static exploration, but cannot use the non-selected
free distances that are seldom beneficial in specific execution
phases. In these cases, NaiveFP outperforms StaticFP because
it fetches all available free PTEs in the PQ. The main disad-
vantage of NaiveFP over StaticFP is that it does not examine
the usefulness of the free prefetches, resulting in PQ thrashing.
However, SBFP identifies the useful free PTEs per execution
phase, combining the advantages of NaiveFP and StaticFP.

Our evaluation shows that using a PQ with 16 and 32
entries provides an average performance reduction of 56% and
32% with respect to a 64-entry PQ, respectively. Larger PQs
provide negligible performance improvements over a 64-entry
PQ. Thus, a 64-entry PQ is optimal design point for this work.

2) Cost of TLB prefetching: To highlight that free prefetch-
ing reduces the cost of TLB prefetching, we present in Figure 9
the normalized number of memory references triggered by
page walks (demand plus prefetch) for all considered scenarios
that exploit free prefetching and TLB prefetchers. The term
memory reference refers to a page walk reference that is
served by the memory hierarchy (L1, L2, LLC, DRAM);
note that we take into account cache locality in page walk
memory references (Section VII). The normalization factor,
100% in Figure 9, is the total number of memory references
for demand page walks without TLB prefetching. We observe
a large increase in memory references when free prefetching
is not exploited (NoFP) because all prefetches require a

92



Q
M

M
S
P
E
C

B
D

Q
M

M
S
P
E
C

B
D

Q
M

M
S
P
E
C

B
D

Q
M

M
S
P
E
C

B
D

Q
M

M
S
P
E
C

B
D

Q
M

M
S
P
E
C

B
D

Q
M

M
S
P
E
C

B
D

0
50

100
150
200
250
300
350

%
 

n
o
rm

a
liz

e
d

m
e
m

o
ry

 r
e
fe

re
n
ce

s

SP DP ASP STP H2P MASP ATP

NoFP NaiveFP StaticFP SBFP

Fig. 9: Normalized memory references due to page walks.

prefetch page walk, and the reduction of the demand page
walks is smaller than the number of prefetch page walks
introduced. Focusing on the BD workloads, SP, DP, ASP, STP,
H2P, MASP, and ATP require 63%, 36%, 1%, 250%, 90%,
106%, and 81% additional memory references compared to
the scenario without TLB prefetching, respectively.

All techniques that exploit free prefetching significantly
reduce the number of page walk memory references because
(i) the majority of the prefetches that require a prefetch page
walk are proactively fetched in the PQ as free prefetches,
and (ii) free prefetches provide PQ hits that save demand
page walks. All considered prefetchers experience their highest
reduction in terms of memory references with SBFP. This
behavior occurs because SBFP saves more TLB misses than
NaiveFP and StaticFP, i.e., it eliminates more demand page
walks, as presented in Figures 8. Overall, ATP with SBFP
eliminates by 37%, 26%, and 5% the number of memory
references due to page walks compared to the scenario without
TLB prefetching for the QMM, SPEC, and BD workloads
respectively. For readability, Figure 9 shows the normalized
number of memory references triggered by both demand and
prefetch page walks. However, memory references that hit in
the cache hierarchy incur lower latency than the ones going to
DRAM, and the latency cost of a demand page walk is more
critical than the latency of a prefetch page since the former
takes place in the critical path while the latter performs in the
background. Section VIII-B2 elaborates on these implications.

B. Evaluation of ATP coupled with SBFP

This section compares ATP coupled with SBFP against
the state-of-the-art TLB prefetchers and other approaches that
improve TLB performance. All prefetchers use a 64-entry PQ.

1) Performance: Figure 10 presents the performance of SP,
DP, ASP, and ATP with SBFP for all evaluated workloads. For
the SPEC workloads we also show the geometric mean for the
whole suite (GM All), including also the non TLB intensive
workloads. For the TLB intensive workloads, ATP with SBFP
outperforms all state-of-the-art prefetchers, achieving geomet-
ric speedups over the best already proposed TLB prefetcher
of 8.7%, 3.4%, and 4.2% for the QMM (up), SPEC (down),
and BD (middle) workloads, respectively. Focusing on the BD
workloads, we observe that ATP coupled with SBFP provides
the overall best improvement. Moreover, for workloads such
as xs.nuclide and sssp.twitter DP provides high performance
since they exhibit great distance correlation. For the xs.nuclide,

Qualcomm Workloads10 1

100

101

102

%
 s

p
e
e
d
u
p
 (

lo
g
 s

ca
le

)

SP

DP

ASP

ATP+SBFP

ASP
AT

P
+SB

FPSP DP

7
.5
%

6
.1
%

4
.8
%

1
6
.2
%

bfs.
kr

on

bfs.
ro

ad

cc
.u

ra
nd

cc
.tw

itt
er

bc.t
witt

er

bc.k
ro

n

ss
sp

.tw
itt

er

ss
sp

.w
eb

tc
.tw

itt
er

pr.t
witt

er

pr.k
ro

n

xs
.h

as
h

xs
.n

ucli
de

Geo
Mea

n
0
5

10
15
20
25
30

%
 s

p
e
e
d

u
p

SP DP ASP ATP+SBFP

31% 75%

sp
hin

x3
Gem

s

xa
lan

_s
xa

lan gcc
m

ilc

m
cf_

s

om
net

_s

om
net

as
ta

r
m

cf

ca
ct

us

GM_A
ll

GM_In
te

0
2
4
6
8

10
12

%
 

sp
e
e
d
u
p

SP DP ASP ATP+SBFP

0

50

100

0

20

40

Fig. 10: Performance comparison between ATP coupled with
SBFP and state-of-the-art TLB prefetchers.

DP outperforms ATP since ATP enables H2P when distance
correlation is observed, although DP is capable of detecting
more complex distance patterns compared to H2P.

As Figure 8 highlights, ATP significantly outperforms its
constituent prefetchers, STP, H2P, and MASP, highlighting
that ATP efficiently combines these prefetchers by selecting
the most appropriate prefetcher per TLB miss and disabling
prefetching when required. To validate these statements, Fig-
ure 11 shows the fraction of time that ATP enables each
constituent prefetcher. When STP, H2P, or MASP cannot
capture the access patterns of the SPEC workloads, ATP
disables prefetching (e.g., xalan s, mcf). For benchmarks
with strided patterns (e.g., milc), ATP enables mostly STP.
MASP is enabled only when the TLB miss stream correlates
well with the PC (e.g., cactus, mcf s). As explained in
Section V, ATP enables H2P only when it is confident that
H2P will produce useful prefetches because H2P uses large
distances that may pollute the PQ content in case of inaccurate
prefetches. Figure 11 reveals that the SPEC workloads are
not benefited by the observed distance correlation, thus ATP
never enables H2P. Contrarily, a large number of the QMM and
BD workloads (e.g., sssp.twitter, xs.nuclide), exhibit distance
correlation among TLB misses. Hence, ATP enables H2P
12% and 34% of the time for the QMM and BD workloads,
respectively. Specifically, for xs.nuclide ATP selects H2P for
prefetching 61% of the time, explaining why DP outperforms

93



sphinx3
Gems

xalan_s
xalan gcc milc

mcf_s
omnet_s

omnet
asta

r mcf
cactu

s

Avg_SPEC

Avg_QMM
Avg_BD

0
20
40
60
80

100

%
 a

ct
iv

at
io

n 
ra

tio H2P STP MASP Disable

Fig. 11: Fraction of time that ATP selects MASP, STP, H2P
or disables TLB prefetching.

QMM SPEC BD
0

50

100

%
 n

o
rm

a
liz

e
d

P
Q

 h
it

s

MASP STP H2P SBFP

A
T
P

A
T
P

A
T
P

Fig. 12: Percentage of PQ hits provided by ATP (its constituent
prefetchers) and SBFP.

ATP for this workload. This evaluation verifies that combining
ATP with SBFP addresses all the findings of Section III.

Furthermore, Figure 12 presents a breakdown of the nor-
malized number of PQ hits provided by our proposal across
all considered workloads, i.e., it shows the fraction of PQ hits
provided by the ATP and the SBFP modules. Moreover, it
breaks down the PQ hits provided by ATP into three sub-
categories; PQ hits provided by MASP, STP, and H2P which
are the constituent prefetchers of ATP. On average, prefetch
requests issued by the constituent prefetchers of ATP are
responsible for 60%, 56%, and 41% of the PQ hits regarding
the QMM, SPEC, and BD, respectively. Notably, SBFP also
saves a big fraction of the TLB misses, since it is responsible
for 40%, 44%, and 59% of the total PQ hits for the QMM,
SPEC, and BD workloads, respectively. The bottom line is
that both ATP and SBFP play an equally significant role at
achieving significant performance enhancements.

2) Cost of TLB Prefetching: Figure 13 presents the average
normalized number of memory references due to page walks
(demand plus prefetch) out of the total number of memory
references for demand page walks without TLB prefetching.
Moreover, it shows (i) a breakdown of the memory references
caused by demand and prefetch page walks, and (ii) a break-
down of the level of the memory hierarchy that serves the
memory references of both demand and prefetch page walks.
For the QMM workloads, ATP with SBFP reduces memory
references by 37%, while SP, DP, and ASP burden the system
with 33%, 19%, and 1% additional memory references. We
report similar results for the SPEC workloads. For the BD
workloads, we observe lower reduction on memory references
than SPEC and QMM workloads because all prefetchers are
unable to accurately detect highly irregular TLB miss patterns.

Notably, ATP with SBFP provides the highest reduction in
demand page walks for all considered workloads because it
provides more PQ hits. Our proposal also reduces the number
of memory references of prefetch page walks compared to
the other prefetchers because (i) it exploits SBFP to prefetch

QMM SPEC
SP

BD QMM SPEC
DP

BD QMM SPEC
ASP

BD QMM SPEC
ATP+SBFP

BD0
25
50
75

100
125
150
175

%
 

n
o
rm

a
liz

e
d

m
e
m

o
ry

 r
e
fe

re
n
ce

s

L1 L2 LLC

Demand Page Walks

DRAM

Prefetch Page Walks

Fig. 13: Normalized memory references due to page walks.

PTEs that otherwise would need a separate prefetch page walk
to be fetched, (ii) the throttling mechanism of ATP disables
TLB prefetching when it is not helpful, and (iii) for strided
patterns the selection mechanism of ATP enables STP, which
uses small strides that are mostly served by free prefetches.
In addition, our proposal provides higher reduction in the
memory references that require a DRAM access than the other
prefetchers among all workloads. ATP with SBFP drastically
reduces the DRAM accesses of demand page walks, which
provides great performance benefits, at the cost of introducing
some DRAM accesses for prefetch page walks, which are not
in the critical path. The takeaway of this experiment is that our
proposal reduces the number of page walk memory references,
their cost, and the performance penalties they cause.

3) Hardware Cost: Each PQ entry requires 36 bits for the
virtual page, 36 bits for the physical page plus 5 attribute bits.
Each prediction table entry of MASP stores 60 bits for the PC,
36 bits for the virtual page, and 15 bits for the stride. Each
FPQ entry stores 36 bits for the virtual page. Considering a
64-entry PQ, SP, DP, ASP, and ATP require in total 0.60KB,
0.95KB, 1.47KB, and 1.68KB, respectively. ATP is slightly
more expensive than the state-of-the-art TLB prefetchers. Each
Sampler entry of the SBFP requires 36 bits for the virtual page
plus 4 bits for the free distance. The FDT uses 10-bit counters.
Hence, SBFP requires 0.31KB to be implemented.

4) Large Pages: To examine the impact of large pages, we
evaluate ATP coupled with SBFP and the state-of-the-art TLB
prefetchers using 2MB pages, similar to prior work [25], [46].
We observe significant MPKI reduction for most workloads
when 2MB pages are used, although many of them still
experience high TLB MPKI rates. For these workloads, ATP
with SBFP reduces by 88% on average the TLB misses that
2MB pages cannot eliminate. Figure 14 shows the speedup
impact of SP, DP, ASP, and ATP with SBFP for the 2MB
scenario. The baseline implies using 2MB pages without TLB
prefetching. ATP with SBFP provides a geometric speedup
of 5.1%, 4.3%, and 9.9% for the QMM, SPEC, and BD
workloads, respectively. For SP, DP, and ASP we observe
negligible speedup results. Note that the SPEC set of work-
loads contains only one benchmark, mcf, since for the other
workloads the 2MB pages eliminate the observed TLB misses.
Finally, most of the PQ hits (89% on average) are produced
by free prefetches because free prefetching with 2MB pages
covers a larger amount of memory compared to 4KB pages.

94



QMM

SP

SPEC BD QMM

DP

SPEC BD QMM

ASP

SPEC BD QMM

ATP+SBFP

SPEC BD
0

5

10

15

20

%
 s

p
e
e
d

u
p

Fig. 14: Performance comparison with 2MB pages.

QMM

SP

SPEC BD QMM

DP

SPEC BD QMM

ASP

SPEC BD QMM

ATP+SBFP

SPEC BD
100

75
50
25

0
25
50
75

100

%
 n

o
rm

a
liz

e
d

d
y
n
a
m

ic
 e

n
e
rg

y

Fig. 15: Normalized dynamic energy consumption.

5) Energy Consumption: To measure the baseline dynamic
energy consumption of address translation we take into ac-
count all accesses into the ITLB, DTLB, L2-TLB, PSC as
well as all page walk memory references. When a TLB
prefetcher is used the dynamic energy is reduced by saving
demand page walks due to PQ hits but it is also increased
by the accesses in the PQ, the Sampler, the FDT, and the
triggered references to memory hierarchy for prefetch page
walks. Figure 15 presents the dynamic energy consumed by
address translation when ATP coupled with SBFP and the
state-of-the-art TLB prefetchers operate in the system. ATP
with SBFP lowers dynamic energy by 24%, 14.6%, and 1%
for the QMM, SPEC, and BD workloads, respectively. SP, DP,
and ASP increase the dynamic energy usage, especially for the
BD workloads. We remark this behavior because our proposal
saves demand page walks by hitting in the PQ and also
decreases the number of prefetch page walks by leveraging
the SBFP module. Regarding the static energy consumption,
negligible results are observed.

C. Comparison with Other Approaches

Figure 16 compares ATP coupled with SBFP against other
state-of-the-art techniques that improve TLB performance.

ISO Storage. We compare our proposal against a system
without TLB prefetching that, for fairness, has an enlarged
TLB. Specifically, the TLB is augmented with 265 entries
without affecting its access time, matching the storage of ATP
plus SBFP (1.68KB + 0.31KB). Figure 16 shows that ATP
with SBFP outperforms this scenario by 14.7%, 9.8%, and
11.5% for the QMM, SPEC, and BD workloads, respectively.

Free prefetching into the TLB. Prior work [26] leverages
PTE locality to fetch all free PTEs directly into the TLB
on demand page walks. This approach does not use TLB
prefetchers nor PQs, and it does not consider selecting only
the useful free PTEs. Figure 16 shows that this approach
(FP-TLB) reduces performance by 10.2% and 7.8% for the
QMM and SPEC workloads, respectively, due to the eviction
of useful PTEs from the TLB. Our results are consistent with
prior work [22], [23] stating that placing all the free PTEs

QMM SPEC BD15
10

5
0
5

10
15
20
25

%
 sp

ee
du

p

ISO-Storage
BOP

FP-TLB
ASAP

Recency
ATP+SBFP

Coalescing
ATP+SBFP+ASAP

Fig. 16: Performance comparison with other approaches.

directly to TLB may pollute its content. There is no previous
work that stores prefetches directly into the TLB using big
data workloads. Our evaluation reveals that placing all free
PTEs into the TLB increases performance by 5.2% for the BD
workloads. These workloads experience massive TLB MPKI
rates and thrash TLB, thus storing useful free PTEs into the
TLB improves performance. Still, ATP coupled with SBFP
outperforms this scenario. We observe similar behavior when
our proposal places all the prefetches directly into the TLB.

Recency-based TLB Preloading [24]. This is a software
approach that modifies the page table so that each PTE stores
the virtual page that is subsequently accessed. A fundamentally
similar approach that only requires microarchitectural modifi-
cations is Markov prefetchers [47], that consist of a prediction
table indexed with the virtual page where each entry contains
a virtual page that is predicted to be accessed next [23]. To
approximate the behavior of Recency-based TLB Preloading,
we enhance a Markov prefetcher with a 64K-entry prediction
table. Figure 16 reveals that our proposal outperforms this
approach by 4.7%, 4.4%, 4.3% for the QMM, SPEC, and BD
workloads, respectively. Finally, this approach requires very
large hardware budget, infeasible for a realistic design.

TLB Coalescing. Coalescing approaches [12], [13], [48] rely
on the contiguity of both virtual and physical memory and
provide limited benefits when contiguity is absent (e.g., due to
fragmentation). Contrarily, SBFP exploits virtual address space
contiguity and ATP relies only on the memory access patterns
of the application. Therefore, our proposal is orthogonal to
TLB coalescing. We compare ATP coupled with SBFP against
a scenario with perfect contiguity in the virtual and physical
memory where each TLB entry stores 8 adjacent PTEs.
Figure 16 shows that this scenario delivers great performance
gains since it increases the TLB reach. Still, our proposal
outperforms this scenario for the QMM and BD workloads,
while the difference for the SPEC workloads is negligible.

Cache Prefetching. Cache prefetchers typically try to learn
strides within 4KB physical pages [49], [50]. Hence, the
number of observed strides is limited. TLB prefetchers try to
capture varying stride patterns since a prefetched page might
be far from the page that triggered the TLB miss. Thus, using
data cache prefetchers for TLB prefetching intuitively limits
the TLB miss patterns that can be captured. To justify this
observation, we convert Best-Offset-Prefetcher (BOP) [49], a
state-of-the-art data cache prefetcher, to prefetch for the TLB
miss stream. We select BOP because it bears some similarity

95



to ATP coupled with SBFP as they both try to identify the
most useful strides per execution phase. We enrich the set of
deltas that BOP uses with negative ones (the original version
of BOP uses only positive deltas) to make sure that we do not
underestimate its potential for TLB prefetching.

Figure 16 shows that when BOP is used as a TLB prefetcher,
it improves performance by 2.3%, 1.5%, and 3.1% for the
QMM, SPEC, and BD workloads, respectively. ATP with
SBFP significantly outperforms BOP for all considered bench-
mark suites because BOP examines the effectiveness of a pre-
defined set of deltas, thus it is unable to capture the varying
stride TLB miss patterns, while our proposal captures more
generic patterns; ATP activates the right TLB prefetcher per
TLB miss and SBFP selects the most useful free PTEs per page
walk. Moreover, BOP checks one offset per learning round,
thus it requires several rounds to gain confidence for prefetch-
ing. In contrast, our proposal identifies faster the useful offsets
as ATP leverages the operation of the Fake Prefetch Queues
to enable the most appropriate TLB prefetcher, and SBFP
learns the usefulness of all free PTEs concurrently. Finally,
our proposal is more aggressive than BOP; ATP enables one
of its constituent prefetchers per TLB miss, and SBFP uses
all offsets that exceed a confidence threshold while BOP uses
only the offset with the highest score.

Prefetched Address Translation (ASAP) [25]. ASAP is a
hardware scheme that lowers the page walk latency using
direct indexing to prefetch deeper levels of the radix tree
page table. Figure 16 shows that ASAP improves performance
by 2.1%, 1.8%, and 4.5% for the QMM, SPEC, and BD
workloads, respectively. ASAP provides important benefits
when the PSCs display low hit rates, but for workloads like
SPEC and QMM which experience high PSC hit rates, its
potential is limited. For the BD workloads, which have lower
PSC hit rates, ASAP provides significant performance benefits.

Combining ATP, SBFP, and ASAP. TLB prefetching is
orthogonal to techniques that lower page walk latency. Since
ASAP lowers the latency cost of page walks, it can be also
used to accelerate the prefetch page walks of ATP. Figure 16
shows that combining ATP with SBFP and ASAP improves
performance by 18.8%, 12.1%, and 16.6% for the QMM,
SPEC, and BD workloads, respectively. ASAP increases the
speedup of our proposal since it reduces the latency cost of
page walks, thus the prefetched PTEs are fetched faster in the
PQ that improves the timeliness of prefetching.

D. Beyond Page Boundaries Cache Prefetching

Modern data cache prefetchers are allowed to trigger
prefetches that cross page boundaries. Such prefetches first
check if the translation resides in the TLB. On TLB hits,
the cache prefetch proceeds, otherwise a page walk fetches
the corresponding translation into the TLB. To quantify the
impact of beyond page boundaries cache prefetching on TLB
performance, we use the Signature Path Prefetcher (SPP)
[50] in the L2 cache, which allows beyond page boundaries
prefetching. Figure 17 presents the performance of (i) SPP,
and (ii) ATP with SBFP and SPP. The baseline corresponds to

QMM SPEC BD
0

10
20
30
40

%
 s

p
e
e
d
u
p

SPP ATP+SBFP+SPP

15.5% 10.4%
12.7%

Fig. 17: Performance comparison with SPP.

a system with the IP stride L2 cache prefetcher and without
TLB prefetching, similar to all previous sections. We observe
that SPP improves performance for all workloads because it
captures more patterns than IP stride, but it only saves a small
fraction of the TLB misses. Indeed, combining SPP with ATP
and SBFP significantly improves performance because, thanks
to our proposal, the timeliness of cache prefetches is improved
and more TLB misses are avoided. The bottom line is that
ATP with SBFP provides large speedups even when a cache
prefetcher that goes beyond page boundaries is used.

E. Interaction with OS Page Replacement Policy

As stated in Section VI, inaccurate TLB prefetches might
harm the page replacement policy. A prefetch is harmful for
the page replacement policy when it sets the access bit of
the corresponding PTE, it is evicted from the PQ without
providing any hit, and it does not belong to the active footprint
of the application. We measure that only 1.7%, 0.9%, and
3.6% of the prefetch requests of ATP with SBFP are harmful
for the page replacement policy for the QMM, SPEC, and
BD workloads. Thus, we consider negligible the probability of
negatively affecting the page replacement policy. We observe a
small number of harmful prefetches because SBFP prefetches
only the most useful free PTEs, while ATP dynamically
enables the right TLB prefetcher and disables prefetching
when it is not confident for issuing new prefetches. To avoid
harming at all the page replacement policy, when a prefetch
is proved to be useless we could trigger a page walk in
the background to reset the access bit of the corresponding
translation in the page table. With this solution, the number
of correcting page walks would be negligible due to the small
number of harmful prefetches introduced by our proposal.3

IX. RELATED WORK

On the locality of the Page Table. Prior work has identified
locality of the PTEs in the page table. Pham et al. [12], [13]
exploit this locality by modifying TLB to increase its reach.
These works require both virtual and physical contiguity, while
SBFP solely exploits virtual contiguity. Liu et al. [14] use this
locality to increase TLB efficiency. Bhattacharjee et al. [26]
propose a shared last-level TLB organization for multicore
systems that fetches directly into the shared TLB the PTEs
1, 2, and 3 pages away from the currently missing page.
Their technique only operates at demand page walks, it does
not issue TLB prefetches, and it targets multicore systems
with a shared last-level TLB. Shin et al. [27] exploit this
locality by fetching all available PTEs for GPU applications.

3The correcting page walks could be issued only when the TLB MSHR is
not full to avoid delaying any demand or prefetch page walk.

96



Wang [39] exploits page table locality to fetch free PTEs
into a TLB buffer only for demand page walks, but without
providing any concrete implementation. Instead, we propose a
practical implementation that dynamically exploits free TLB
prefetching through sampling for multiple TLB prefetchers,
thus we exploit page table locality for both demand and
prefetch page walks, and our proposal improves performance
of private per-core TLBs using CPU applications.

Other TLB prefetchers. Bhattacharjee et al. [22] propose
two TLB prefetchers for multicore systems. The first exploits
TLB misses on common virtual pages among cores and pushes
TLB entries from leader to other cores. The second is based on
DP [23] and exploits distance-predictable TLB misses across
cores. ATP could form the base for the latter scheme.

Reducing the TLB miss latency. One way to reduce the cost
of TLB misses is by improving the performance of the MMU-
Caches [7], [18]. Another approach is the POM-TLB [17], a
large L3 TLB stored in main memory that requires only one
memory reference per page walk. DVMT [36] reduces the
cost of TLB misses by allowing the application to define the
appropriate page table format, so that less memory references
are needed per page walk. Hashed page tables [16], [20], [51]
have been proposed to resolve TLB misses faster than the radix
page tables. TLB prefetching is an orthogonal approach.

Speculation. In speculation-based approaches [19], [21],
[52], [53], a missing translation is predicted, the processor
continues executing instructions speculatively, and a validation
page walk is performed in the background. Those approaches
are affected by the system state (OS, fragmentation) as they
depend on allocating contiguous virtual pages to contiguous
physical pages to predict the missing address translations.

Increasing TLB Reach. Processor and OS vendors provide
support for large pages [54] to increase TLB reach. Prior work
focuses on combining base and large pages by using a single
TLB [55]–[57] or separate TLBs [11] per page size. While
large pages increase TLB reach and reduce page walks, they
are susceptible to performance issues when the OS cannot
allocate such mappings (e.g., due to fragmentation) or when
the hardware support for large pages is limited with respect
to the application needs. Several approaches try to bypass the
limitations of large pages [6], [10], [13], [15], [48], [58]–[62].
These schemes are orthogonal to hardware TLB prefetching
since they rely on explicit OS and hardware support.

X. CONCLUSIONS

This paper provides evidence that exploiting the locality in
the last level of the page table for TLB prefetching purposes
has the potential to provide large performance benefits. To
ameliorate the address translation performance bottleneck,
this paper proposes (i) Sampling-Based Free TLB Prefetching
(SBFP), a dynamic sampling-based scheme that identifies and
prefetches only the most useful free page table entries per page
walk, and (ii) Agile TLB Prefetcher (ATP), a composite TLB
prefetcher comprised of three low-cost TLB prefetchers while
introducing selection and throttling schemes to enable the most
appropriate TLB prefetcher per TLB miss, and disable TLB

prefetching when required. Considering an extensive set of
contemporary industrial, academic, and big data workloads,
we demonstrate that combining ATP with SBFP provides
significant performance enhancements while reducing the vast
majority of the page walk references to the memory hierarchy.

XI. ACKNOWLEDGEMENTS

We are profoundly grateful to Abhishek Bhattacharjee,
Dionisios Pnevmatikatos, Elvira Teran, and our anonymous
reviewers for their constructive feedback throughout the paper
drafting. This work is partially supported by the Spanish
Ministry of Science and Technology through the PID2019-
107255GB project, the Generalitat de Catalunya (contract
2017-SGR-1414), the NSF grants CCF-1912617 and CNS-
1938064, and generous gifts from Intel Labs. Georgios
Vavouliotis has been supported by the Spanish Ministry of
Economy, Industry and Competitiveness and the European
Social Fund under the FPI fellowship No. PRE2018-087046.
Lluc Alvarez has been supported by the Spanish Ministry
of Economy, Industry and Competitiveness under the Juan
de la Cierva Formacion fellowship No. FJCI-2016-30984.
Marc Casas has been supported by the Spanish Ministry of
Economy, Industry and Competitiveness under the Ramon y
Cajal fellowship No. RYC-2017-23269.

REFERENCES

[1] S. Kanev, J. P. Darago, K. Hazelwood, P. Ranganathan, T. Moseley,
G.-Y. Wei, and D. Brooks, “Profiling a warehouse-scale computer,”
in Proceedings of the 42nd International Symposium on Computer
Architecture, 2015.

[2] M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee, D. Jevd-
jic, C. Kaynak, A. D. Popescu, A. Ailamaki, and B. Falsafi, “Clearing the
clouds: A study of emerging scale-out workloads on modern hardware,”
in Proceedings of the 17th International Conference on Architectural
Support for Programming Languages and Operating Systems, 2012.

[3] G. Ayers, J. H. Ahn, C. Kozyrakis, and P. Ranganathan, “Memory
hierarchy for web search,” in Proceedings of the 24th International
Symposium on High Performance Computer Architecture (HPCA), 2018.

[4] R. Kumar, B. Grot, and V. Nagarajan, “Blasting through the front-
end bottleneck with shotgun,” in Proceedings of the 23rd International
Conference on Architectural Support for Programming Languages and
Operating Systems, 2018.

[5] Z. Yan, D. Lustig, D. Nellans, and A. Bhattacharjee, “Translation ranger:
Operating system support for contiguity-aware tlbs,” in Proceedings of
the 46th International Symposium on Computer Architecture, 2019.

[6] A. Basu, J. Gandhi, J. Chang, M. D. Hill, and M. M. Swift, “Efficient
virtual memory for big memory servers,” in Proceedings of the 40th
Annual International Symposium on Computer Architecture, 2013.

[7] A. Bhattacharjee, “Large-reach memory management unit caches,” in
Proceedings of the 46th Annual IEEE/ACM International Symposium
on Microarchitecture, 2013.

[8] T. E. Anderson, H. M. Levy, B. N. Bershad, and E. D. Lazowska,
“The interaction of architecture and operating system design,” SIGARCH
Comput. Archit. News, Apr. 1991.

[9] M. Rosenblum, E. Bugnion, S. Devine, and S. A. Herrod, “Using the
simos machine simulator to study complex computer systems,” ACM
Trans. Model. Comput. Simul., Jan. 1997.

[10] C. H. Park, T. Heo, J. Jeong, and J. Huh, “Hybrid tlb coalescing:
Improving tlb translation coverage under diverse fragmented memory
allocations,” SIGARCH Comput. Archit. News, Jun. 2017.

[11] V. Karakostas, J. Gandhi, A. Cristal, M. D. Hill, K. S. McKinley,
M. Nemirovsky, M. M. Swift, and O. S. Unsal, “Energy-efficient address
translation,” in Proceedings of the 2016 IEEE International Symposium
on High Performance Computer Architecture (HPCA), March 2016.

97



[12] B. Pham, V. Vaidyanathan, A. Jaleel, and A. Bhattacharjee, “CoLT:
Coalesced Large-Reach TLBs,” in Proceedings of the 45th Annual
IEEE/ACM International Symposium on Microarchitecture, 2012.

[13] B. Pham, A. Bhattacharjee, Y. Eckert, and G. H. Loh, “Increasing TLB
reach by exploiting clustering in page translations,” in Proceedings
of the 20th International Symposium on High Performance Computer
Architecture (HPCA), Feb 2014.

[14] L. Liu, “Multiple-page translation for tlb,” in Proceedings of 1993 IEEE
International Conference on Computer Design ICCD’93, Oct 1993.

[15] V. Karakostas, J. Gandhi, F. Ayar, A. Cristal, M. D. Hill, K. S. McKinley,
M. Nemirovsky, M. M. Swift, and O. Ünsal, “Redundant memory
mappings for fast access to large memories,” in Proceedings of the 42nd
Annual International Symposium on Computer Architecture, 2015.

[16] I. Yaniv and D. Tsafrir, “Hash, don’t cache (the page table),” in
Proceedings of the 2016 ACM SIGMETRICS International Conference
on Measurement and Modeling of Computer Science, 2016.

[17] J. H. Ryoo, N. Gulur, S. Song, and L. K. John, “Rethinking TLB Designs
in Virtualized Environments: A Very Large Part-of-Memory TLB,” in
Proceedings of the 44th Annual International Symposium on Computer
Architecture, 2017.

[18] T. W. Barr, A. L. Cox, and S. Rixner, “Translation Caching: Skip, Don’T
Walk (the Page Table),” in Proceedings of the 37th Annual International
Symposium on Computer Architecture, 2010.

[19] T. W. Barr, A. L. Cox, and S. Rixner, “Spectlb: A mechanism for
speculative address translation,” in Proceedings of the 38th Annual
International Symposium on Computer Architecture (ISCA), 2011.

[20] D. Skarlatos, A. Kokolis, T. Xu, and J. Torrellas, “Elastic cuckoo
page tables: Rethinking virtual memory translation for parallelism,”
in Proceedings of the 25th International Conference on Architectural
Support for Programming Languages and Operating Systems, 2020.

[21] C. Alverti, S. Psomadakis, V. Karakostas, J. Gandhi, K. Nikas,
G. Goumas, and N. Koziris, “Enhancing and exploiting contiguity for
fast memory virtualization,” in Proceedings of the ACM/IEEE 47th
International Symposium on Computer Architecture (ISCA), 2020.

[22] A. Bhattacharjee and M. Martonosi, “Inter-core Cooperative TLB for
Chip Multiprocessors,” in Proceedings of the 15th Edition of ASPLOS
on Architectural Support for Programming Languages and Operating
Systems, 2010.

[23] G. B. Kandiraju and A. Sivasubramaniam, “Going the Distance for TLB
Prefetching: An Application-driven Study,” in Proceedings of the 29th
Annual International Symposium on Computer Architecture, 2002.

[24] A. Saulsbury, F. Dahlgren, and P. Stenström, “Recency-based TLB
Preloading,” in Proceedings of the 27th Annual International Symposium
on Computer Architecture, 2000.

[25] A. Margaritov, D. Ustiugov, E. Bugnion, and B. Grot, “Prefetched
address translation,” in Proceedings of the 52nd Annual IEEE/ACM
International Symposium on Microarchitecture, 2019.

[26] A. Bhattacharjee, D. Lustig, and M. Martonosi, “Shared Last-level TLBs
for Chip Multiprocessors,” in Proceedings of the 17th International
Symposium on High Performance Computer Architecture, 2011.

[27] S. Shin, M. LeBeane, Y. Solihin, and A. Basu, “Neighborhood-aware
address translation for irregular gpu applications,” in Proceedings of the
51st IEEE/ACM International Symposium on Microarchitecture, 2018.

[28] “Championship Value Prediction,” https://www.microarch.org/cvp1/.
[29] J. L. Henning, “SPEC CPU2006 Benchmark Descriptions,” SIGARCH

Comput. Archit. News, Sep. 2006.
[30] “SPEC CPU 2017,” https://www.spec.org/cpu2017/.
[31] S. Beamer, K. Asanovic, and D. A. Patterson, “The GAP benchmark

suite,” CoRR, 2015.
[32] “XSBench,” https://github.com/ANL-CESAR/XSBench.
[33] “Intel® 64 and IA-32 Architectures Optimization Reference

Manual,” https://www.intel.com/content/dam/www/public/us/en
/documents/manuals/64-ia-32-architectures-optimization-manual.pdf.

[34] “Intel 5-Level Paging and 5-Level EPT,”
https://software.intel.com/content/www/us/en/develop/download/5-
level-paging-and-5-level-ept-white-paper.html.

[35] D. A. Patterson and J. L. Hennessy, Computer Architecture: A Quanti-
tative Approach. Morgan Kaufmann Publishers Inc., 1990.

[36] H. Alam, T. Zhang, M. Erez, and Y. Etsion, “Do-it-yourself virtual
memory translation,” in Proceedings of the 44th Annual International
Symposium on Computer Architecture, 2017.

[37] Abishek Bhattacharjee, “Advanced concepts on address translation,”
http://www.cs.yale.edu/homes/abhishek/abhishek-appendix-l.pdf.

[38] Abhishek Bhattacharjee, Margaret Martonosi, “Inter-core cooperative tlb
prefetchers,” https://patents.google.com/patent/US8880844B1/en.

[39] James Wang, Zongjian Chen, “Patent on TLB Prefetching,”
https://patents.google.com/patent/US20110010521.

[40] S. P. Vanderwiel and D. J. Lilja, “Data prefetch mechanisms,” ACM
Comput. Surv., Jun. 2000.

[41] J.-L. Baer and T.-F. Chen, “Effective hardware-based data prefetching
for high-performance processors,” IEEE Trans. Comput., May 1995.

[42] E. Perelman, G. Hamerly, M. Van Biesbrouck, T. Sherwood, and
B. Calder, “Using simpoint for accurate and efficient simulation,”
SIGMETRICS Perform. Eval. Rev., Jun. 2003.

[43] S. Mirbagher-Ajorpaz, E. Garza, G. Pokam, and D. A. Jimenez, “Chirp:
Control-flow history reuse prediction,” in Proceedings of the 53rd
International Symposium on Microarchitecture (MICRO), 2020.

[44] “ChampSim,” https://crc2.ece.tamu.edu/.
[45] S. Li, K. Chen, J. H. Ahn, J. B. Brockman, and N. P. Jouppi, “CACTI-P:

Architecture-level Modeling for SRAM-based Structures with Advanced
Leakage Reduction Techniques,” in Proceedings of the International
Conference on Computer-Aided Design, 2011.

[46] N. Hajinazar, P. Patel, M. Patel, K. Kanellopoulos, S. Ghose,
R. Ausavarungnirun, G. F. Oliveira, J. Appavoo, V. Seshadri, and
O. Mutlu, “The virtual block interface: A flexible alternative to the
conventional virtual memory framework,” in Proceedings of the 47th
International Symposium on Computer Architecture (ISCA), 2020.

[47] D. Joseph and D. Grunwald, “Prefetching using markov predictors,” in
Proceedings of the 24th Annual International Symposium on Computer
Architecture, 1997.

[48] M. Talluri and M. D. Hill, “Surpassing the TLB Performance of
Superpages with Less Operating System Support,” in Proceedings of the
6th International Conference on Architectural Support for Programming
Languages and Operating Systems, 1994.

[49] P. Michaud, “Best-offset hardware prefetching,” in Proceedings of the
IEEE International Symposium on High Performance Computer Archi-
tecture (HPCA), 2016.

[50] J. Kim, S. H. Pugsley, P. V. Gratz, A. L. N. Reddy, C. Wilkerson,
and Z. Chishti, “Path confidence based lookahead prefetching,” in
Proceedings of the 49th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO), 2016.

[51] J. Huck and J. Hays, “Architectural support for translation table man-
agement in large address space machines,” in Proceedings of the 20th
Annual International Symposium on Computer Architecture, 1993.

[52] S. Haria, M. D. Hill, and M. M. Swift, “Devirtualizing memory
in heterogeneous systems,” in Proceedings of the 23rd International
Conference on Architectural Support for Programming Languages and
Operating Systems, 2018.

[53] B. Pham, J. Veselý, G. H. Loh, and A. Bhattacharjee, “Large pages and
lightweight memory management in virtualized environments: Can you
have it both ways?” in Proceedings of the 48th International Symposium
on Microarchitecture, 2015.

[54] “Transparent Huge Pages in 2.6.38,” http://lwn.net/Articles/423584/.
[55] G. Cox and A. Bhattacharjee, “Efficient address translation for architec-

tures with multiple page sizes,” in Proceedings of the 22nd International
Conference on Architectural Support for Programming Languages and
Operating Systems, 2017.

[56] M. Papadopoulou, X. Tong, A. Seznec, and A. Moshovos, “Prediction-
based superpage-friendly TLB designs,” in Proceedings of the 21st
International Symposium on High Performance Computer Architecture
(HPCA), 2015.

[57] A. Seznec, “Concurrent support of multiple page sizes on a skewed
associative TLB,” IEEE Transactions on Computers, July 2004.

[58] N. Ganapathy and C. Schimmel, “General purpose operating system sup-
port for multiple page sizes,” in Proceedings of the Annual Conference
on USENIX Annual Technical Conference, 1998.

[59] J. Navarro, S. Iyer, P. Druschel, and A. Cox, “Practical, transparent
operating system support for superpages,” SIGOPS Oper. Syst. Rev., Dec.
2003.

[60] M. Swanson, L. Stoller, and J. Carter, “Increasing tlb reach using
superpages backed by shadow memory,” in Proceedings of the 25th
Annual International Symposium on Computer Architecture, 1998.

[61] M. Talluri, S. Kong, M. D. Hill, and D. A. Patterson, “Tradeoffs
in supporting two page sizes,” in Proceedings of the 19th Annual
International Symposium on Computer Architecture, 1992.

[62] F. Guvenilir and Y. N. Patt, “Tailored page sizes,” in Proceedings of the
47th International Symposium on Computer Architecture (ISCA), 2020.

98


