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Abstract. Many modern applications are memory-bound due to irreg-
ular memory access patterns. Dijkstra’s algorithm belongs in this class of
applications that suffer from this kind of accesses. In this paper, we intro-
duce the Prefetch-Process-Thread-Alternation scheme which is based on
a helper-thread prefetching technique. PPTA involves two threads that
alternately switch between a prefetching and a process phase, to hide the
memory latency caused by cache misses. We evaluate both schemes us-
ing two different platforms. Our experiments, on graphs with increasing
densities, show that PPTA achieves performance speedup up to 1.82 for
sparse and 1.62 for dense graphs.

1 Introduction

Optimizing the performance of memory-bound applications is a challenging task
and becomes even harder when they do not expose parallelism in a straightfor-
ward way. These applications typically operate on large data-sets with limited
temporal locality. The cost of intensive data movement and irregular memory
accesses is significant since most of these accesses are served by main memory.
The so called memory-wall accentuates the need to use techniques like software
prefetching in order to overcome irregular memory patterns which cannot be
predicted by modern hardware prefetchers.

In this paper, we implement and evaluate a software-based technique, in
modern processors, using a scheme that derives from the idea of moving compu-
tation near the data it demands. The proposed scheme is called Prefetch-Process-
Thread-Alternation (PPTA) and alternates the role of the involved threads be-
tween prefetching and processing. Colocating data and threads appropriately,
we are able to substantially reduce cache misses and significantly increase the
application’s performance.

We apply our scheme to Dijkstra’s algorithm [4] since it is a challenging
example of memory-bound application whose performance is negatively affected
by irregular memory accesses. We also evaluate it, using an AMD’s Opteron and
an Intel-Broadwell, on graphs with increasing densities, resulting in speedups up
to 1.82.



2 Dijkstra’s Algorithm

2.1 Algorithm’s Basics

Dijkstra’s algorithm computes single source shortest paths (SSSP) for directed
graphs with non-negative edges and is used in a variety of applications, like
routing protocols and VLSI design. Specifically, let G = (V,E) be a directed
graph with n = |V | vertices, and w : E → <+ weight function assigning non-
negative real-valued weights to the edges of G. For each vertex v, the SSSP
problem computes δ(v), the value of the shortest path from a source vertex s
to v. For each vertex v, Dijkstra’s algorithm maintains a shortest-path estimate
(or tentative distance) d(v), which is an upper bound for the actual value of
the shortest path from s to v, δ(v). Initially, d(v) is set to +∞ and through
successive edge relaxations it is gradually decreased, converging to d(v). The
relaxation of an edge(v, w) sets d(w) to min{d(w), d(v)+w(v, w)}, which means
that the algorithm tests whether it can decrease the weight of the shortest path
from s to w by going through v. Finally, this algorithm updates an array called
previous so that the shortest path to a vertex v can be recursively reconstructed.

Initially, all vertices v are unreached (d[v] = +∞) except s (d[s] = 0). For
each iteration, the vertex with the minimum key is extracted from a min-priority
queue (ExtractMin: line 8) and its state is settled to visited. Then, its out-
going edges are relaxed (Update: lines 18,19) and the keys d of the neighbors,
whose state 6= visited, are decreased if needed. It is also essential to update the
previous array and decrease the key of each neighbor-node in the priority queue
to retain its minimum property (Decrease-Key: line 17).

In our implementation of the algorithm we use a m-ary heap as a min-priority
queue and m is set to 2, resulting in a binary heap. We also use a practical opti-
mization of Dijkstra’s algorithm called Uniform Cost Search (UCS) [5]. During
the initialization phase of the default algorithm, all vertices are entered into
the priority queue. However this is not mandatory since the algorithm can start
with its priority queue containing a single element and continue by dynamically
inserting the new vertices discovered. UCS maintains a smaller priority queue
and speeds up the Decrease-Key and Extract-Min operations and reveals that
the Update operation is a major bottleneck. The algorithm is presented in more
detail in Alg. 1.

An intuitive choice for parallelizing Dijkstra’s algorithm is to exploit paral-
lelism at the inner loop by relaxing all outgoing edges of vertex u in parallel.
Though, this approach leads to significant slowdowns because we need to im-
pose excessive synchronization to the threads trying to concurrently access the
priority queue and the distance & previous arrays [2].

2.2 Performance analysis

We profiled the different operations of Dijkstra’s Algorithm in a fine-grained way
and we present in Figure 1, the distribution of the execution times, in graphs
with 10M nodes and increasing number of edges. For this experiment we have



Algorithm 1 : Dijkstra with UCS optimization

Require: Graph G(V,E), Source vertex S
Ensure: Predecessors array previous

Shortest distance array d
1: for all v ∈ V [G] do
2: d[v]← +∞
3: previous[v]← undefined
4: d[s]← 0 // Initialization
5: S ← empty set
6: Q← s
7: while Q is not empty do
8: u← Extract-Min(Q) // Extract-Min
9: S ← S ∪ {u}

10: for all edge (u, v) outgoing from u do
11: if v /∈ S then
12: sum← d[u] + w(u, v)
13: if v /∈ Q then
14: Insert(Q,v,sum)
15: else
16: if sum < d[v] then // Update
17: u← DecreaseKey(Q,v,sum)
18: d[v]← d[u] + w(u, v)
19: previous[v]← u

used an Intel Broadwell-EP, whose characteristics are described in Section V.
The Update operation includes lines 18,19 of Alg. 1 excluding line 17, i.e. the
Decrease-Key operation. It is evident that, the Update operation becomes the
main part of the execution as graphs become denser and the Initialization
phase’s piece of execution time is minimal compared to the other ones.

As shown in Figure 1, the Extract-Min and the Decrease-Key operations af-
fect the execution time less than the Update does, as graphs become denser.
On the one hand, both operations consist of an upward traversal of the mini-
mum heap that involves a small number of hops, since the height of the heap is
logarithmic to the number of vertices. Specifically the Decrease-Key operation
is performed only if we need to relax an edge. On the other hand, the Update
operation consists of four read operations that occur for every edge of the ex-
tracted vertex. The four memory locations that need to be read are: the distance
array at indexes v and u, the cost of the edge w(u, v) and the previous array
at index v. Reading the distance and the previous array, whose size is equal to
the number of vertices (10M), at a random index v, generates memory accesses
resulting in cache misses. In other words, there is no temporal locality between
the data needed to relax the edges of u. In dense graphs, this phenomenon is
more intense since the number of edges per vertex is large. As irregular memory
accesses are increased and our data-set does not fit in the lower levels of the
cache hierarchy, performance becomes worse.
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Fig. 1: Breakdown of execution time
percentage. The Update operation

dominates in dense graphs.

Fig. 2: The effect of enabling hardware
prefetchers on Broadwell-EP.

A slowdown is observed in most cases.

In addition, the hardware prefetchers used in modern systems fail to prefetch
the correct piece of data in these irregular cases. In Fig. 2 we present the achieved
speedup when hardware prefetchers are enabled compared to when they are
disabled. Given graphs in range of 40M-500M, we notice a drop in performance,
at about 0.9 on average. We observe that prefetchers provide no performance
boost to this irregular memory accesses algorithm. In this paper, we will apply
software prefetching to accelerate such memory accesses.

10 20 30 40 50 60 70 80
100

200
300

400
500

600
700

800

Number of edges (M)

90

92

94

96

98

100

C
o
rr

ec
t
P

re
d
ic

ti
o
n
s

(%
)

Fig. 3: Correct Predictions (%) of the forthcoming Extracted minimum vertex.
The prediction is 99.1% accurate on average.

3 Mitigating memory latency with software prefetching

Our goal is to hide the latency of cache misses that originate from the Update
operation. The idea of software prefetching is to predict irregular memory ac-
cesses, so that the piece of data needed is loaded from the main memory to
the cache hierarchy before it is accessed by the application [1], [6]. Prefetching
the correct chunk of data relies on the prediction of the forthcoming extracted
minimum-key vertex u. Using the information stored in the priority queue, we



are able to make a reliable prediction about the next extracted vertex. The piece
of data we prefetch are the neighbors of the minimum key-vertex of the priority
queue after the extract-min operation of the current phase of the algorithm but
before its Update Operation. Our guess is that there is a high probability this
vertex will be extracted next. In Fig.3 we present the ratio of correct predictions
and we observe that it is almost perfect in every graph. This way, the probability
that the data we prefetch will be utilized is much higher.

Based on the previous motivation, we came up with the Prefetch-Process-
Thread-Alternation scheme which is based on a common and less complex prefetch-
ing helper-thread scheme.

3.1 Prefetching Helper-Thread scheme

Firstly, we implemented a simple Prefetching Helper Thread (PHT) scheme sim-
ilar to [7]. This scheme consists of two threads. The first one constantly executes
the algorithm (main) and the second works in parallel with the main thread
and aggresively prefetches data to the nearest shared cache memory, helping
the main thread avoid misses from upcoming irregular memory accesses. This
scheme depends on the shared cache memory between the two threads and on
the shared pipeline resources, in case we employ simultaneous multithreading. As
shown in Section V. this scheme is not capable of reaching increasing speedups
as graphs become denser. Therefore, we came up with the PPTA scheme whose
performance scales better as graphs become denser.

3.2 Prefetch-Process-Thread-Alternation scheme

In this section we present a more sophisticated scheme called Prefetch-Process-
Thread-Alternation (PPTA). It is also a two-thread scheme that employs soft-
ware prefetching. However, this technique derives from the idea of moving com-
putation near data. In fact, we try to hide cache misses using two different
phases for each thread. Compared to the original algorithm, we expect a signifi-
cant reduction of cache misses, created by the Update operation, that results in
improved performance.

In our implementation one of the two threads starts by initializing all the
flags needed for synchronization of both threads and the data structures Q, d and
previous. Our scheme consists of two phases in each round of the algorithm: the
prefetching and the process phase. One of the threads is responsible for executing
the algorithm while the prefetch-thread prefetches the data that will be required
during the next round. More specifically, the process-thread extracts the mini-
mum vertex while the prefetching-thread is waiting for the prefetch signal. After
the Extract-Min operation, the process-thread notifies the prefetching-thread to
read the new minimum key of the pq and start prefetching the neighbors of the
speculatively selected minimum key-vertex. Then, the process-thread begins the
Update operation, whose completion signals the end of the round and informs the
prefetching-thread to stop prefetching. As shown in Fig. 4, at the start of round



i+1 the two threads change roles, to exploit the fact that the prefetching-thread
brought the data it needs, for the upcoming Update, to the L1 cache memory.

Thread 1

Thread 2

Time
Extract-Min Update Prefetching

Interrupted PrefetchingIdle time

round i+1 round i+2round i

Fig. 4: Execution pattern of PPTA scheme

This process continues alternately until Q is not empty and all distances
have settled. There are two cases we need to examine regarding the prefetching
phase. They are illustrated in Fig. 4. In rounds i and i+ 1, thread 2 has finished
its prefetching phase before thread 1 completes the Update operation. In con-
trast, during round i+2, thread 2 is interrupted during its prefetching phase and
begins the Extract-min operation without having prefetched the whole set of
data indespensable for the relaxation phase. This kind of interrupt is necessary
considering that, if thread 2 waits for all chunks of data to be prefetched, the
upcoming Extract-Min operation will not be executed until the prefetching is
completed and therefore our algorithm’s execution will slow down. The code for
both threads is presented in Alg. 2 and Alg. 3.

To coordinate the two threads we are using four synchronization flags. Two
flags are needed to signal the start of each thread’s prefetching phase and two
more to notify them for the completion of the relaxation phase and the start of
the Extract-Min.

4 Experimental Evaluation

4.1 Experimental setup

For our experiments we used two dual socket servers, equipped with AMD’s
Opteron and Intel’s Broadwell-EP processors. The main characteristics of the
two systems are shown in Table I and their cache memory hierarchies are re-
spectively presented in Fig. 5. We used the configurations presented below:



Algorithm 2 : Thread 1 code for PPTA scheme

Initialize Q, d, previous
prefetch1 ← 1 extract1 ← 1
prefetch2 ← 0 extract2 ← 0
while Q is not empty do

while(prefetch1=0);
prefetch1 ← 0
min← ReadMin(Q)
for all neighbors of min and while extract1=0 do

prefetch neighbors′ data
while(extract1=0);
extract1 ← 0
u← Extract-Min(Q)
prefetch2 ← 1
for all edge (u, v) outgoing from u do

relaxation phase
extract2 ← 1

Algorithm 3 : Thread 2 code for the PPTA scheme

while Q is not empty do
while(prefetch2=0);
prefetch2 ← 0
min← ReadMin(Q)
for all neighbors of min and while extract2=0 do

prefetch neighbors′ data
while(extract2=0);
extract2 ← 0
u← Extract-Min(Q)
prefetch1 ← 1
for all edge (u, v) outgoing from u do

relaxation phase
extract1 ← 1

– Opteron:
1. Threads pinned to cores which share the L2 cache.

– Broadwell-EP:
1. Threads pinned to cores which share the L1 cache (SMT).
2. Threads pinned to cores which share the L3 cache.

Both schemes were developped using C++. More specifically, the coordination
flags used in both schemes were implemented using C++ atomic operations and
the acquire/release memory order. We also disabled the hardware prefetchers,
based on the results in Section III.

4.2 Reference graphs

In order to experiment on graphs with variety of density and structure, we used
the GTgraph generator [3]. We constructed graphs with 10M vertices and varying
number of edges from the Random, R-MAT and SSCA families.



Table 1: Systems’ Configurations

Name AMD
Opteron

Intel
Broadwell-

EP

#Cores 4x8 2x22

#Threads 32 88 (SMT)

Core clock 2.4 GHz 2.2 GHz

L1(Data) 16 KB, 4-way,
64B block size

32 KB, 8-way,
64B block size

L2

256 KB, 8-way,
64B block size
(shared per 2

cores)

2 MB, 16-way,
64B block size

(private)

L3

16 MB,
128-way, 64B

block size
(shared per

NUMA node)

56 MB, 20-way,
64B block size

(shared per
die)

Memory 250 GB 64 GB

OS Debian 8.8 Debian 8.3

Linux Kernel 3.2.0 4.7.0

GCC 4.9.2 with -O3
optimization

4.9.2 with -O3
optimization

Fig. 5: Cache Hierarchy of both
platforms

4.3 Performance Results

We evaluate both the PHT and also the PPTA schemes. Figure 6 presents
speedup, sum of data cache misses and the ratio of prefetched data per chunk of
relaxations, achieved by the PPTA and the PHT scheme. The results concern-
ing cache misses are normalized using the ones measured from serial execution
and refer to the process phase of both schemes (main thread in PHT). In the
case of Opteron, we were not able to measure L3 data misses due to the lack of
appropriate performance monitoring events. We focus our study on one family
of graphs, the Random, as the other families exhibit similar behavior. Figure 6
presents the results on AMD Opteron and Intel-Broadwell, respectively. Below,
we analyse the results of both schemes and correlate them with their character-
istics.
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Fig. 6: Rows present speedup, cache misses of the process phase, and ratio of
the successfully prefetched data. Columns represent the three graph families.



Regarding the PHT scheme, although it’s performance on sparse graphs is
better than the PPTA, we witness a significant slowdown as graphs become
denser. This can be attributed to the fact that while in PPTA the process-
thread finds its data prefetched in its L1 cache, in the PHT scheme the same
data is prefetched in the L2 (Opteron) or L3 (Broadwell) and the process-thread
has to fetch it in the L1 itself.

We observe that speedup, concerning the PPTA scheme in Opteron, is pro-
portional to the density of the graph. As graphs become denser more data are
prefetched, cache misses of the process phase are reduced, and greater speedup
is achieved. PPTA results in noticeable reduction of cache misses, with maxi-
mum being 45% as shown in Figure 6a, leading to a maximum speedup 1.62
using the densest graph consisting of 700M edges. This pattern is also present
in Broadwells’ metrics, where maximum speedup is 1.5.

However, there is a major difference regarding sparse graphs. In Broad-
well’s case, we observe a significant slowdown in sparse graphs in contradiction
with Opteron’s case where there is a slight speedup. This can be attributed
to the fact that using the PPTA scheme we introduce synchronization and co-
herency overhead. Both threads frequently update the priority queue and the
distance,previous arrays and when each of them tries to read or write in these
memory locations, cache coherency mechanisms trigger cache-to-cache transfers.
Regarding Broadwell’s shared L3 hierarchy, sparse graphs expose the overhead of
these coherence mechanisms which is higher compared to Opteron’s case where
data transfers occur between the L2 caches.

We deduce that the most beneficial option for the PPTA scheme is to employ
cores that share as many levels of the cache hierarchy as possible. In this way,
we are able to reduce coherency overhead since data travel for shorter distances
inside the cache hierachy.

By using Broadwell-EP, we can employ hyperthreads that share the whole
memory hierarchy including the highest level of cache (L1). The PPTA-hyperthread
scheme shows appreciable speedups in sparse graphs. However, as graphs be-
come denser performance worsens. This may be attributed to the fact that as
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the prefetching phase becomes more memory-intensive, the hyperthread reserves
an increasing number of pipeline’s resources to successfully prefetch the data
needed from our application and subsequently slows down the Update operation
performed by the process-thread.

In Fig. 7 we measure, for both schemes, the portion of cycles each thread re-
mains idle during the process phase because of out-of-order resources contention.
We witness that, by employing the hyperthreads, and as graphs become denser,
the main part of the execution is spent on waiting to reserve out-of-order re-
sources. The contention is also increased because of the larger data-set used.
More specifically, in the case of the 500M edges Random graph, despite the
similar reduction of cache misses that we achieve by using PPTA and PPTA-
hyperthread, speedup is smaller in the second case because of the contention
overhead.

In sparse graphs, the hyperthreads contest less for the resources of the pipeline
resulting in noticeable speedups with the maximum of them being 1.61 (Random).
It concerns the sparsest of our graphs with 10M edges.

Regarding Broadwell, there is an important trade-off concerning the use of
the hyperthread. Although, we reduce coherency overhead by using a shared
L1 hierarchy and benefit in sparse graphs, denser ones expose the increasing
overhead of pipeline contention and lead to slowdowns.

5 Related Work

To deal with the impact of indirect memory accesses, other schemes propose the
use of specialized hardware prefetchers such as the Indirect Memory Prefetcher
[10] or the VLDP [9], at the cost of increased hardware. In [8] helper-threads are
spawned to accelerate the computational part of Dijkstra’s Algorithm. However,
one drawback of this scheme is the cache pollution, caused by the helper threads,
that affects the performance of the main thread (max speedup 1.84 using 14
threads) . Finally, in [6] one or multiple threads prefetch data while the main
thread runs the computation and the main thread migrates to the other core.
In contrast, the PPTA scheme does not involve thread migration and prefetches
data by exploiting the algorithm’s characteristics.

6 Conclusions

In this paper, we introduced the Prefetch-Process-Thread-Alternation scheme
that employs software prefetching to deal with irregular memory accesses and
speeds up Dijkstra’s algorithm. We conclude that our scheme introduces co-
herency overhead which can be diminished by employing cores that share as
many levels of the cache hierarchy as possible. Moreover, PPTA achieves in-
creasing speedups as graphs become denser. AMD Opteron achieves speedups
up to 1.62 for the densest of our graphs and Intel Broadwell-EP reaches 1.82
for a sparse graph, with the hyperthread in use. Considering the serial nature of



Dijkstra’s algorithm and the inherent difficulties in its parallelization, this is a
significant performance gain.

The fact that the PPTA scheme achieves an increasing rate of speedups as
graphs become denser, is a key result since extremely large scale graphs have
emerged in various modern applications, such as, the graph of the Twitter social
network and the neuronal network of the Human Brain Project.

As future work, we intend to explore the potential of a Near-Data Processing
scheme which provides specialized hardware and appropriate software API to
deal with memory-intensive applications such as graph processing. We would
also like to expand our research towards different kinds of memory intensive
algorithms related to data analytics and machine learning.
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