
Efficient Resource Management for Data Centers:
The ACTiCLOUD Approach

Extended Abstract

Vasileios Karakostas
National Technical University of

Athens, ICCS

Georgios Goumas
National Technical University of

Athens, ICCS

Ewnetu Bayuh Lakew
Umeå University

Erik Elmroth
Umeå University

Stefanos Gerangelos
National Technical University of

Athens, ICCS

Simon Kolberg
Umeå University

Konstantinos Nikas
National Technical University of

Athens, ICCS

Stratos Psomadakis
National Technical University of

Athens, ICCS

Dimitrios Siakavaras
National Technical University of

Athens, ICCS

Petter Svärd
Umeå University

Nectarios Koziris
National Technical University of

Athens, ICCS

ABSTRACT
Despite their proliferation as a dominant computing paradigm,
cloud computing systems lack effective mechanisms to manage
their vast resources efficiently. Resources are stranded and frag-
mented, limiting cloud applicability only to classes of applications
that pose moderate resource demands. In addition, the need for
reduced cost through consolidation introduces performance inter-
ference, as multiple VMs are co-located on the same nodes. To
avoid such issues, current providers follow a rather conservative
approach regarding resource management that leads to significant
underutilization. ACTiCLOUD is a three-year Horizon 2020 project
that aims at creating a novel cloud architecture that breaks existing
scale-up and share-nothing barriers and enables the holistic man-
agement of physical resources, at both local and distributed cloud
site levels. This extended abstract provides a brief overview of the
resource management part of ACTiCLOUD, focusing on the design
principles and the components.

CCS CONCEPTS
• Computer systems organization→ Cloud computing;

KEYWORDS
Resource management, resource efficiency, cloud computing, data
centers, in-memory databases, NUMA, heterogeneous, scale-up/out.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SAMOS XVIII, July 15–19, 2018, Pythagorion, Samos Island, Greece
© 2018 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-6494-2/18/07. . . $15.00
https://doi.org/10.1145/3229631.3236095

ACM Reference format:
Vasileios Karakostas, Georgios Goumas, Ewnetu Bayuh Lakew, Erik Elm-
roth, Stefanos Gerangelos, Simon Kolberg, Konstantinos Nikas, Stratos
Psomadakis, Dimitrios Siakavaras, Petter Svärd, and Nectarios Koziris. 2018.
Efficient Resource Management for Data Centers: The ACTiCLOUD Ap-
proach. In Proceedings of 2018 International Conference on Embedded Com-
puter Systems: Architectures, Modeling, and Simulation, Pythagorion, Samos
Island, Greece, July 15–19, 2018 (SAMOS XVIII), 3 pages. https://doi.org/10.
1145/3229631.3236095

1 INTRODUCTION
ACTiCLOUD [5] aims at increasing the viability of cloud deploy-
ment scenarios through enhancement of the various technology
ingredients across the entire stack, i.e., the hypervisor, the cloud
manager, system libraries, language runtimes, and database sys-
tems, with a novel and holistic set of mechanisms and policies. All
these are built on top of new-generation computing system archi-
tectures, having a special focus on large-scale applications working
on huge data sets.

1.1 Motivation
ACTiCLOUD responds to four typical scenarios of resource ineffi-
ciency in state-of-the-art cloud offerings:

Resource underutilization. Cloud service providers (CSPs)
are conservative and reserve system resources for the infrequent
cases of peak traffic. This strategy clearly leaves large amounts
of resources underutilized [1]. ACTiCLOUD aims at improving
resource efficiency and utilization through effective consolidation.

Resource unavailability. Current server architectures are un-
able to serve requests that exceed the resources provided by single
servers. This prohibits resource-hungry applications from enjoy-
ing the benefits of cloud. ACTiCLOUD aims at applying efficient
resource management on platforms that break server barriers, fo-
cusing on applications that rely on large in-memory databases.

https://doi.org/10.1145/3229631.3236095
https://doi.org/10.1145/3229631.3236095
https://doi.org/10.1145/3229631.3236095

SAMOS XVIII, July 15–19, 2018, Pythagorion, Samos Island, Greece V. Karakostas et al.

Resource fragmentation. Despite resources being available,
they might be scattered around. Hence, cloud sites are unable to
host a new–potentially resource demanding–service. ACTiCLOUD
aims at identifying resource fragmentation and applying efficient
migration and co-scheduling policies.

Resource contention. Problems arise due to interference be-
tween applications that compete for shared resources, when these
are misplaced within the cloud platform. ACTiCLOUD aims at iden-
tifying and mitigating resource interference through appropriate
migration and co-location actions.

1.2 Goal & Overview
ACTiCLOUD’s vision is to develop a novel cloud architecture that
targets improved utilization and scalability of resources. This will
ultimately translate to: (i) significant cost and performance improve-
ments for CSPs, (ii) higher performance, stability, and lower pricing
for cloud applications, and (iii) enhanced flexibility and scalability
for database applications that face tough challenges trying to satisfy
their resource demands in existing cloud offerings.

ACTiCLOUD adopts state-of-the-art European hardware plat-
forms that follow two different flavors: x86-based systems that
represent the typical ISA-wise component of a cloud datacenter
(Numascale platform), and ARM-based systems that capture the
features of low-power, microserver technologies that can serve
both as cloud datacenter servers and edge devices (KMAX plat-
form). These platforms provide aggregation support to pool re-
sources at the rack-scale. Then, ACTiCLOUD extends an innova-
tive light-weight hypervisor (OnApp) for virtualizing resources at
the rack-scale, and improves system libraries and managed run-
time systems (JVM) to support enhanced execution and resource
allocation. At the orchestration layer, ACTiCLOUD: (i) embraces
state-of-the-art cloud management technologies (OpenStack [9])
to utilize already existing mechanisms in resource monitoring and
management, and (ii) introduces the ACTiManager, that undertakes
the critical tasks of optimizing resource allocation, management,
and utilization. Finally, ACTiCLOUD enables the efficient execu-
tion of in-memory column-store (MonetDB) and graph (Neo4j)
databases, to provide novel ACTiCLOUD-enabled database-as-a-
service (DBaaS) platforms, in addition to supporting traditional
cloud applications through Infrastructure-as-a-Service platforms.

This extended abstract provides a brief overview of ACTiMan-
ager, focusing on the design principles, the components, and the
execution lifetime of a VM within the ACTiCLOUD architecture.

2 ACTiMANAGER
ACTiManager is the most critical component in the ACTiCLOUD ar-
chitecture as it plays a central role in the realization of its objectives
towards next generation IaaS and DBaaS platforms. It is a novel
resource management engine that complements OpenStack to opti-
mize allocation of resources by enabling prioritization of workloads,
interference mitigation, and distributed cloud site collaboration.

2.1 Design Principles
ACTiManager is designed with the following principles in mind:

Principle 1.To operate in the typical closed-loop control fashion
based on: (i) monitoring and information aggregation, (ii) infor-
mation processing and modeling, and (iii) decision making and
actuation, leading respectively to three core components: the Infor-
mation Aggregator, the Modeler, and the Decision Maker.

Principle 2. To be scalable in large-scale cloud installations,
operating at various levels, including node, cloud site, and inter-site
levels. For this reason, ACTiManager follows a modular hierarchi-
cal design, split into two sub-modules: (i) ACTiManager.internal,
whose goal is to manage resources at a fine-grain level within the
node (e.g., mapping of virtual CPUs on physical CPUs, allocation of
memory, etc.), and (ii) ACTiManager.external, whose goal is to man-
age resources within and across cloud sites, enforcing high-level
policies for placement, load balance, and consolidation.

Principle 3. To minimize the modifications to an existing cloud
management system and to operate as an "out-of-the-box" add-on
component that can be plugged-in and out of an existing instal-
lation at will. Towards this direction, we put significant effort in
interfacing with existing, well established components of the core
cloud manager (OpenStack), and minimizing the necessary changes
required for its integration with ACTiManager.

Principle 4. ACTiManager assumes that the cloud site admin-
istration may distinguish between high-priority, latency-critical
VMs (i.e., gold instances) and low priority, batch VMs (i.e., silver
instances) [4, 6], potentially with a different billing policy [2].

Principle 5. ACTiManager assumes that some applications may
incorporate special functionality to expose their desired metric of
interest and achieved Quality of Service (QoS). If this functionality
is provided by the application, ACTiManager is able to utilize it to
act towards maintaining the desired QoS of applications [4].

Principle 6. To support ACTiCLOUD’s strategic objectives, busi-
ness scenarios, and use cases, ACTiManager relies on online char-
acterization of the VMs and incorporates in their feature list char-
acteristics that describe a VM’s potential to suffer from or create
interference (i.e., a noisy or a sensitive VM regarding the use of
resources, respectively) by the co-location of another VM within
the same node [3, 7, 8].

Principle 7. To dynamically identify the characteristics of the
VMs, ACTiManager logically splits the site infrastructure into (i) a
small number of nodes operating as laboratory nodes, and (ii) the
rest (vast majority) of the site nodes as production nodes [8, 10].
More specifically, ACTiManager uses the laboratory node(s) for
quickly characterizing the VMs and extracting the aforementioned
information (i.e., noisy or sensitive behavior) in an execution envi-
ronment that is free from any source of interference. The rest of the
compute nodes, i.e., the vast majority of the resources, are treated
as usual production nodes.

2.2 Components
A specific ACTiManager.internal instance takes care of resource
orchestration internally within each node, while a single ACTi-
Manager.external component orchestrates resources across nodes
within a cloud site and between distributed cloud sites. Note that
depending on the underlying architecture and setup of the cloud
site, nodes may differ substantially across setups.

Efficient Resource Management for Data Centers:
The ACTiCLOUD Approach SAMOS XVIII, July 15–19, 2018, Pythagorion, Samos Island, Greece

Regardless of its level of operation (node or site), ACTiManager
consists of the following three components: the Information Aggre-
gator, the Modeler, and the Decision Maker. More specifically, the
Information Aggregator is responsible for collecting information
from the various monitoring facilities. The Modeler component pro-
vides models for: (i) characterizing the execution of the applications
as noisy or sensitive regarding their use of resources, (ii) detecting
anomalies like interference, imbalance, overload, underload etc., (iii)
predicting the impact of various actions (e.g., consolidation effect
on the already executing application, migration time, and failure
probability), and (iv) characterizing applications in terms of their
resource footprint and co-execution behavior on a multi-tenant
system. Finally, the Decision Maker component decides about the
optimized resource allocation and initiates the relevant actions,
including placement, prioritization, consolidation, migration, in-
terference mitigation, and resizing of the running VMs. Note that
our design and implementation of ACTiManager targets generic
server platforms; however, we also pay special attention to intelli-
gently leveraging the characteristics of the server platforms that
are employed within the project, i.e., the NUMA architecture of the
Numascale system, and the hyper-converged low-power heteroge-
neous architecture of the KMAX system.

2.3 Lifecycle of a VM in ACTiCLOUD
ACTiManager heavily relies on online monitoring and analysis of
a VM’s "health" status. To be able to detect any anomalies and take
corrective actions, the system needs to have a solid understanding
of the VMs’ execution characteristics, including their performance,
resource demands, required QoS levels, potential to suffer from or
create interference, etc. To accomplish this, every newly spawned
VM with unknown characteristics starts its execution in the lab-
oratory node. During its execution there, ACTiManager collects
monitoring information and, based on the characterization model,
it creates the fingerprint of the VM, e.g., whether it is noisy or
sensitive regarding resource utilization.

The VM is analyzed for a characterization period. Then, AC-
TiManager decides the node in which the VM will continue its
execution in the production environment, by checking if the re-
sources that the VM requires are available in any node (number
of cores, memory, etc.) taking into account the priorities (gold or
silver) and the characteristics (fingerprint, noisy, sensitive) of the
rest of the VMs/applications that run currently in the site’s nodes.

ACTiManager.internal and ACTiManager.external wake up peri-
odically and check for various events, such as change in execution
load, interference detection, and under/over-utilization, among oth-
ers. In case none of the above events occur, ACTiManager keeps
the current configuration and waits for the next decision period.
In case any of the above events occurs, ACTiManager decides how
to resolve that issue based on the various models and by applying
actions at node or site level.

Finally, in case the behavior of a VM changes significantly (e.g.,
change in fingerprint or performance), ACTiManager may migrate

that VM to the laboratory node to perform another characterization
phase and extract a new fingerprint.

3 CONCLUSIONS
Improving the resource efficiency and utilization of data centers is of
paramount importance due to economies of scale. Towards that goal,
the ACTiCLOUD project takes an holistic approach and works on
the entire stack. In this extended abstract we briefly introduced the
design principles of ACTiManager, that is responsible for enforcing
efficient resource management in the project’s architecture.

ACKNOWLEDGMENTS
This research has received funding from the European Union’s
Horizon 2020 research and innovation programme under Grant
Agreement no. 732366 (ACTiCLOUD).

REFERENCES
[1] Luiz Andr Barroso, Jimmy Clidaras, and Urs Hlzle. 2013. The Datacenter As a

Computer: An Introduction to the Design of Warehouse-Scale Machines (2nd ed.).
Morgan & Claypool Publishers.

[2] ACTiCLOUD Consortium. 2018. Deliverable 1.2: ACTiCLOUD Architecture.
(2018). https://acticloud.eu

[3] Christina Delimitrou and Christos Kozyrakis. 2013. Paragon: QoS-aware Sched-
uling for Heterogeneous Datacenters. In Proceedings of the Eighteenth Inter-
national Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS ’13). ACM, New York, NY, USA, 77–88. https:
//doi.org/10.1145/2451116.2451125

[4] Christina Delimitrou and Christos Kozyrakis. 2014. Quasar: Resource-efficient
and QoS-aware Cluster Management. In Proceedings of the 19th International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS ’14). ACM, New York, NY, USA, 127–144. https://doi.org/10.
1145/2541940.2541941

[5] Georgios Goumas, Konstantinos Nikas, Ewnetu Bayuh Lakew, Christos Kot-
selidis, Andrew Attwood, Erik Elmorth, Michail Flouris, Nikos Foutris, John
Goodacre, Davide Grohmann, Vasileios Karakostas, Panagiotis Koutsourakis,
Martin Kersten, Mikel Luján, Einar Rustad, John Thomson, Luis Tomas, Atle
Vesterkjaer, Jim Webber, Ying Zhang, and Nectarios Koziris. 2017. ACTi-
CLOUD: Enabling the Next Generation of Cloud Applications. In IEEE 37th
International Conference on Distributed Computing Systems (ICDCS). 1836–1845.
https://doi.org/10.1109/ICDCS.2017.252

[6] David Lo, Liqun Cheng, Rama Govindaraju, Parthasarathy Ranganathan, and
Christos Kozyrakis. 2015. Heracles: Improving Resource Efficiency at Scale. In
Proceedings of the 42Nd Annual International Symposium on Computer Architecture
(ISCA ’15). ACM, New York, NY, USA, 450–462. https://doi.org/10.1145/2749469.
2749475

[7] JasonMars, Lingjia Tang, Robert Hundt, Kevin Skadron, andMary Lou Soffa. 2011.
Bubble-Up: Increasing Utilization in Modern Warehouse Scale Computers via
Sensible Co-locations. In Proceedings of the 44th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO-44). ACM, New York, NY, USA, 248–259.
https://doi.org/10.1145/2155620.2155650

[8] Dejan Novaković, Nedeljko Vasić, Stanko Novaković, Dejan Kostić, and Ricardo
Bianchini. 2013. DeepDive: Transparently Identifying andManaging Performance
Interference in Virtualized Environments. In Proceedings of the 2013 USENIX
Conference on Annual Technical Conference (USENIXATC’13). USENIXAssociation,
Berkeley, CA, USA, 219–230. http://dl.acm.org/citation.cfm?id=2535461.2535489

[9] OpenStack 2018. Open source software for creating private and public clouds.
(2018). https://www.openstack.org.

[10] Nedeljko Vasić, Dejan Novaković, Svetozar Miučin, Dejan Kostić, and Ricardo
Bianchini. 2012. DejaVu: Accelerating Resource Allocation in Virtualized Environ-
ments. In Proceedings of the Seventeenth International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS XVII). ACM,
New York, NY, USA, 423–436. https://doi.org/10.1145/2150976.2151021

https://acticloud.eu
https://doi.org/10.1145/2451116.2451125
https://doi.org/10.1145/2451116.2451125
https://doi.org/10.1145/2541940.2541941
https://doi.org/10.1145/2541940.2541941
https://doi.org/10.1109/ICDCS.2017.252
https://doi.org/10.1145/2749469.2749475
https://doi.org/10.1145/2749469.2749475
https://doi.org/10.1145/2155620.2155650
http://dl.acm.org/citation.cfm?id=2535461.2535489
https://doi.org/10.1145/2150976.2151021

	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Goal & Overview

	2 ACTiManager
	2.1 Design Principles
	2.2 Components
	2.3 Lifecycle of a VM in ACTiCLOUD

	3 Conclusions
	Acknowledgments
	References

