
Performance Prediction of NUMA Placement:
a Machine-Learning Approach

Fanourios Arapidis, Vasileios Karakostas, Nikela Papadopoulou, Konstantinos Nikas,
Georgios Goumas, Nectarios Koziris

Computing Systems Laboratory
School of Electrical and Computer Engineering
National Technical University of Athens, ICCS

{farap, vkarakos, nikela, knikas, goumas, nkoziris}@cslab.ece.ntua.gr

Abstract—In this paper we present a machine-learning ap-
proach to predict the impact on performance of core and memory
placement in non-uniform memory access (NUMA) systems. The
impact on performance depends on the architecture and the
application’s characteristics. We focus our study on features that
can be easily extracted with hardware performance counters that
are found in commodity off-the-self systems. We run various
single-threaded benchmarks from Spec2006 and Parsec under
different placement scenarios, and we use this benchmarking
data to train multiple regression models that could serve as
performance predictors. Our experimental results show notable
accuracy in predicting the impact on performance with relatively
simple prediction models.

Index Terms—performance, modeling, NUMA, placement

I. INTRODUCTION

NUMA systems are present in today’s data centers as they
provide the necessary infrastructure for scale-up workloads.
The ubiquity of NUMA systems owes to their ability to
provide large amounts of shared memory to applications over
physically distributed memory nodes. However, the varying
memory access latency and bandwidth that arise from the mul-
tiple memory modules renders the placement of application
threads and memory critical to the application performance.
Common wisdom mainly calls for memory locality, namely an
application thread and its memory should reside on the same
NUMA node, while also taking into consideration memory
bandwidth and contention. Hence, many prior works have
focused on characterizing and/or modeling the impact of
NUMA on multi-threaded applications [9]–[11], [14], [15],
focusing mainly on selecting the optimal placement of the
application’s multiple threads on the NUMA nodes.

Our work in this paper is triggered by a different prob-
lematic scenario that may arise in NUMA systems and that
is exemplified in the ACTiCLOUD project [6], which seeks
to improve utilization and resource efficiency in data centers.
Instead of optimizing the placement of a single multi-threaded
application that can use as many resources as possible, or
the placement of many applications that run concurrently and
hence need to have their cores and memory close to each
other, we target the case in which it is impossible to supply all
applications with (mostly) local memory and some need to run
with remote memory. Hence, effective modeling is necessary
to select which applications should run remotely.

For example, consider a 4-node NUMA system in which
a single memory-hungry application, e.g., an in-memory
database, occupies the cores of a single NUMA node and
the memory of two NUMA nodes. That scenario leaves
spare resources, i.e., the cores of the second NUMA node.
However, there is no local memory available. In that case,
when the resource manager decides which applications should
be scheduled on the spare cores, it should be able to select
applications that show little performance degradation when
running with remote memory. Our experiments show that
indeed not all applications experience the same performance
degradation due to remote placement (Section II). Hence, to
make correct decisions, the resource manager should have
some prior knowledge on the impact of memory placement on
performance, by making use of effective prediction models.

In this paper, we present a machine-learning approach to
predict the impact on performance of core and memory place-
ment in NUMA systems (Section III). We focus our study on
features that can be easily extracted using common hardware
performance counters, i.e., misses that occur in the last-level
cache (LLC) and the TLB, and instructions per cycle (IPC).
We use benchmarking data from a wide set of single-threaded
benchmarks from Spec2006 and Parsec, to train multiple
regression models that could serve as performance predictors.
Our experimental results show notable accuracy in predicting
the impact on performance, i.e., 5.31% mean absolute error
and 0.93 coefficient of determination (R2), with relatively
simple, yet non-linear, prediction models (Section IV).

II. MOTIVATION

In this section we provide background information about
non-uniform memory access (NUMA) systems and then we
quantify the impact of NUMA placement on various bench-
marks, motivating the need for effective models that predict
performance under different NUMA placement scenarios.

A. Background on NUMA systems

A NUMA system typically consists of many cores and large
amount of main memory by assembling together multiple
sockets and memory modules. This large computing system
is unified in the sense that a single operating system is

296

2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom)

978-1-5386-7899-2/18/$31.00 ©2018 IEEE
DOI 10.1109/CloudCom2018.2018.00064

bl
ac
ks
ch
ol
es

bo
dy
tra

ck
ca
nn
ea
l

de
du
p

fa
ce
si
m

fe
rre

t
flu
id
an
im
at
e

fre
qm

in
e

rtv
ie
w

sw
ap
tio
ns

st
re
am

cl
us
te
r

vi
ps

40
0.
pe
rlb
en
ch
0

40
0.
pe
rlb
en
ch
1

40
0.
pe
rlb
en
ch
2

40
1.
bz
ip
20

40
1.
bz
ip
21

40
1.
bz
ip
22

40
1.
bz
ip
23

40
1.
bz
ip
24

40
1.
bz
ip
25

40
3.
gc
c0

40
3.
gc
c1

40
3.
gc
c2

40
3.
gc
c3

40
3.
gc
c4

40
3.
gc
c5

40
3.
gc
c6

40
3.
gc
c7

40
3.
gc
c8

41
0.
bw

av
es

41
6.
ga
m
es
s0

41
6.
ga
m
es
s1

41
6.
ga
m
es
s2

42
9.
m
cf

43
3.
m
ilc

43
4.
ze
us
m
p

43
5.
gr
om

ac
s

43
6.
ca
ct
us
AD

M
43
7.
le
sl
ie
3d

44
4.
na
m
d

44
5.
go
bm

k0
44
5.
go
bm

k1
44
5.
go
bm

k2
44
5.
go
bm

k3
44
5.
go
bm

k4
44
7.
de
al
II

45
0.
so
pl
ex
0

45
0.
so
pl
ex
1

45
3.
po
vr
ay

45
6.
hm

m
er
0

45
6.
hm

m
er
1

45
8.
sj
en
g

45
9.
G
em

sF
D
TD

46
2.
lib
qu
an
tu
m

46
4.
h2
64
re
f0

46
4.
h2
64
re
f1

46
4.
h2
64
re
f2

46
5.
to
nt
o

47
0.
lb
m

47
1.
om

ne
tp
p

47
3.
as
ta
r0

47
3.
as
ta
r1

48
2.
sp
hi
nx
3

0

50

100

150

200

250

300

350

Pe
rfo

rm
an
ce

 w
.r.
t.
lo
ca

l (
N
1/
N
0
or
 N

2/
N
0)
 (%

)

interleave | near
interleave | far
remote | near
remote | far

Fig. 1: Percentage of performance degradation for interleave and remote placement scenarios, normalized to the local placement.

responsible for managing the resources, while the programmer
sees a large shared address space.

A NUMA system classifies cores and memory into NUMA
nodes [8]. All memory available in one node has the same
access characteristics (i.e., latency and bandwidth) for a par-
ticular core. Memory is called local or remote if it is allocated
from the same or different NUMA node where the core is
allocated, respectively. The process of assigning cores and
memory from the various NUMA nodes that are available in
the system is called NUMA placement.

B. Impact of NUMA placement

We want first to quantify the impact of NUMA placement
on performance. We run benchmarks from Spec2006 [7] and
Parsec [4] benchmark suites using the numactl [1] command
utility under three NUMA placement scenarios:

• local: Both core and memory are allocated from the
same NUMA node. This is the best scenario in terms
of memory latency.

• interleave: Core is allocated from one NUMA node (e.g.,
N0), while memory is allocated from two nodes, the local
and a remote one (e.g., N0 and N1), in interleave fashion.
In this scenario, applications experience worse memory
latency; however, the memory bandwidth doubles.

• remote: Core and memory are allocated from different
NUMA nodes. This is the worst scenario in terms of
memory latency and has the same memory bandwidth
with the local scenario.

We use a 4-node NUMA system in which the latency differs
when accessing a remote NUMA node. Section IV provides
more details regarding the system. In our experimental plat-
form, the latency for accessing N1’s memory from N0’s core
is lower compared to when accessing N2’s memory from
N0’s core. Hence, we define two sets of the above interleave
and remote placement scenarios: in the first set the core is
allocated from N0 and the memory from N1, while in the
second scenario the core is again allocated from N0 but the
memory is allocated from N2.

Figure 1 shows the impact of NUMA placement on perfor-
mance for the various configurations. The bars marked as near

refer to the case when the remote node is close (N1), and the
bars marked as far refer to the case when the remote node is
far (N2). For both near and far scenarios, we plot results for
the interleave placement and the the remote placement. The
results are normalized to the local placement.

We observe that applications can be classified into three
categories depending on the impact of NUMA placement on
their performance. The first set consists of applications that ex-
hibit negligible performance degradation when executed under
the interleave and placement scenarios, such as perlbench,
bzip2, hmmer, and freqmine. The second set consists of
applications that experience up to 50% performance degrada-
tion, such as gcc, mcf, zeusmp, and facesim. Finally, the
third set consists of applications that experience more than
50% performance degradation and reaches up to 200%, such
as milc, soplex, GemsFDTD, and streamcluster.

In summary, we observe that different applications ex-
perience different impact on performance due to NUMA
placement. Hence, in this work we aim at identifying the
characteristics that correlate with performance and use them
in order to predict that performance degradation.

III. NUMA PERFORMANCE PREDICTION

The goal of our work is to create performance models that
associate the impact of NUMA placement on performance
with a set of runtime metrics, transparently to the running
applications. The target metric of the performance models
is the performance degradation (or improvement) that an
application experiences when part or all of its memory is
allocated on a remote NUMA node, in comparison to its
performance when all of its memory is resident on the local
NUMA node. As we want our modeling approach to operate
transparently to the running applications, we use IPC as the
performance indicator of single-threaded applications. Thus,
our target metric is the relative performance in terms of IPC,
namely IPCinterleave/IPClocal or IPCremote/IPClocal.

A. Metrics as Features

We base our modeling approach on metrics that can be eas-
ily extracted at runtime using generic hardware performance

297

0 5 10 15 20 25 30
LLC-MPKI

50
100
150
200
250
300
350

N
1/

N
0

(%
)

0 10 20 30 40 50 60
TLB-MPKI

50
100
150
200
250
300
350

N
1/

N
0

(%
)

spec | interleave parsec | interleave spec | remote parsec | remote

0.0 0.5 1.0 1.5 2.0 2.5 3.0
IPC

50
100
150
200
250
300
350

N
1/

N
0

(%
)

0 5 10 15 20 25 30
LLC-MPKI

50
100
150
200
250
300
350

N
2/

N
0

(%
)

0 10 20 30 40 50 60
TLB-MPKI

50
100
150
200
250
300
350

N
2/

N
0

(%
)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
IPC

50
100
150
200
250
300
350

N
2/

N
0

(%
)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
IPC

−5
0
5
10
15
20
25
30

LL
C
-M

PK
I

0 5 10 15 20 25 30
LLC-MPKI

−10
0
10
20
30
40
50
60

TL
B-
M
PK

I

0 10 20 30 40 50 60
TLB-MPKI

0.0
0.5
1.0
1.5
2.0
2.5
3.0

IP
C

Fig. 2: Correlation results for the LLC-MPKI, TLB-MPKI, and IPC with respect to performance degradation (first two rows) and with respect
to each other (last row). In the first row, the remote node is near (N1). In the second row, the remote node is far (N2).

counters and tools (e.g., perf [2] in Linux). All the listed
metrics depend on both the benchmarks’ characteristics and
the platform’s architecture. More specifically, the metrics that
we consider as features are the following:

• Last level Cache Misses per Kilo Instructions (LLC-
MPKI): This metric counts the number of LLC misses
that occur during the execution of thousand instructions.
It indicates how often the benchmark needs to fetch
data from memory, and hence provides a good indicator
of whether a certain NUMA placement scenario would
affect its performance. This metric is related to the cache
organization of the platform.

• TLB Misses per Kilo Instructions (TLB-MPKI): This met-
ric counts the number of TLB misses that occur during the
execution of thousand instructions. It indicates how often
an application needs to fetch an address translation and
provides also a good indicator of whether an application
is memory intensive. This metric is related to the TLB
organization of the platform.

• Instructions per Cycle (IPC): This metric indicates the
current performance of the application, counting the num-
ber of instructions that are committed in every cycle. This
metric is related to the application’s available instruction
level parallelism, indicates whether the application is
compute or memory intensive, and depends on the plat-
form’s hardware resources that exploit that parallelism.

B. Benchmarking

We use benchmarks from Spec2006 [7] and Parsec [4]
benchmark suites to: (i) identify any correlation with the
aforementioned metrics and the impact of NUMA placement
on performance under various execution scenarios, and (ii)
build prediction models that use those metrics as inputs and
predict performance for various NUMA placement scenarios.

C. Model Building

The task of building performance models for predicting
the impact of NUMA placement on performance falls into
the category of supervised learning. The training set consists
of (some of) the benchmarks, executed under the various
placement scenarios that were described in Section II.

The features play an important role in modeling. Because
not all features affect to the same extent the performance
degradation of NUMA placement, we need to understand
their correlation. Figure 2 plots the correlation of the various
metrics with performance degradation. The columns correlate
performance degradation with LLC-MPKI, TLB-MPKI, and
IPC, respectively. The first row of results considers the case
when the remote node is near (N1), and the second row
considers the case when the remote node is far (N2). The
results are normalized to the local placement scenario.

We observe a strong correlation and a monotonic relation
with the LLC-MPKI metric, and a weaker correlation with
the TLB-MPKI metric. Correlation with IPC is less clear.

298

To understand whether some of the features are redundant,
we also plot the correlation of pairs of the three metrics,
LLC-MPKI, TLB-MPKI and IPC, as shown in the third row
of Figure 2. We observe that there is no clear correlation
between the individual features. Hence, we conclude that an
ideal model should include all three features. Since there are
no evident linear relationships between the three features and
the target, we opt for a non-linear model.

To avoid the manual effort of selecting the model hypothe-
sis, given the complexity of searching the space of non-linear
combinations of the three metrics, we automatically generate
models following a model generation approach similar to the
one presented in [5]. To generate multiple model hypotheses,
we perform non-linear transformations of the three metrics and
also combine them in interaction terms, namely products of
two or more metrics. The generated models may include one
or more of the following transformations of the three metrics
as additive terms, along with coefficients:
{ai0 × x, ai0 × log(xi), ai0 × logni0(xi), ai0 × xi

ni0 , ai0 ×
xi + ai1 × log(xi), ai0 × xi + ai1 × logni0(xi), ai0 ×
xni0 + ai1 × log(xi), ai0 × xi

ni0 + ai1 × logni1(xi)}, xi ∈
{LLC MPKI, TLB MPKI, IPC}.

Our model hypotheses may also include interactions of the
three metrics, and in particular, one of the following two terms:
{aij×xi

mi×xj
mj , aijk×xi

mi×xj
mj×xk

mk}, xi, xj , xk ∈
{LLC MPKI, TLB MPKI, IPC}.

The coefficients ai0, ai1, aij , aijk and the exponents
ni0, ni1,mi,mj ,mk, where they exist, are computed during
the model estimation. Finally, our models include an intercept
term b, also computed during model estimation.

We have created a python tool for the automatic model gen-
eration, generating 1360 model hypotheses. We use Python’s
curve_fit function from the scikit package to fit all the
generated models to our training set. We then select the model
that best fits our data using the mean absolute error (MAE)
and the coefficient of determination R2.

D. Discussion

The approach we propose opts for simple, yet accurate,
models. Given the limited number of NUMA nodes in our
experimental setup, we have built different models for the
various placement scenarios, using only the three features
related to the application characteristics and have trained four
models separately for each one of the four different NUMA
placement scenarios. However, for a system with more nodes
and asymmetry in memory latency and bandwidth, building
different models for each possible placement is an efficient
solution. A more suitable approach would be to build a
single model for all possible placements, using additional,
explanatory features to reflect the memory placement and the
nodes in use. This approach could also yield a model with
improved accuracy due to the larger, merged training set.

Benchmarking is currently the most time-consuming part
in our modeling approach, as it is based on collecting mea-
surements for applications in standard benchmark suites. An
alternative approach is to construct a micro-benchmark that

will be able to sweep the parameter space and provide a
large space of possible values for the features in use and
performance under different NUMA placement scenarios. This
would significantly reduce the time to collect measurements
for the training set, and would also make our modeling
approach more generic and easily applicable to larger systems.

Model generation and training, for our current setup, is not
lengthy in time, taking only a few hours, and only needs to be
applied once per system. However, if the number of features
increases, the number of generated models can become orders
of magnitude higher, making the training time prohibitively
long. A solution is to prune the space of generated models, by
constraining the powers of the exponents to specific values, as
in [5]. That would also decrease the per model training time,
as it decreases the search space for the curve fitting algorithm.

IV. EVALUATION

In this section, we evaluate the accuracy of our approach
for predicting the impact of NUMA placement on perfor-
mance. We report the training methodology for our model and
demonstrate prediction results for the relative performance of
applications for the target NUMA placement.

TABLE I: Platform details.

Model Intel Xeon E5-4620
Micro-architecture Sandy Bridge

Core frequency 2.20GHz
L1 cache (I/D) 32KB/32KB

L2 cache 256KB per core
L3 cache 16MB per core

Cores per socket 8
Sockets 4

NUMA nodes 4
Memory 256GB

A. Methodology

All the reported experiments are performed on an Intel Xeon
E5-4620 platform that consists of 4 NUMA nodes. Table I
includes details about the platform.

To train and evaluate the accuracy of the generated pre-
diction models, we perform cross-validation. In particular, we
implement random subsampling validation, repeated 5 times.
Each time, we form a randomly-generated test set, consisting
of 20 benchmarks, out of 64 in total. We use the rest of the
benchmarks that do not belong in the test set as the training
set. We train the model and then measure its accuracy by
using the benchmarks in the testing set and computing the
mean absolute error for all predicted values, as well as the
coefficient of determination R2. We repeat the same process
for all five test sets, and compute and report the average of
the aforementioned metrics, across the five repetitions.

B. Results

Table II presents the 10 best models that were generated
by our tool and that were evaluated for their accuracy using
our methodology. The models are sorted based on the mean
absolute error and the coefficient of determination R2. We
observe that all 10 best models include all features, but each

299

TABLE II: The 10 best generated performance models. x1, x2, and x3 correspond to LLC-MPKI, IPC, and TLB-MKPI, respectively.

No. Model R2 Avg. Error (%)
1 a1 ∗ xn1

1 + a2 ∗ log(x2 + 1)n2 + a3 ∗ x3 + b 0.9310 5.3153
2 a1 ∗ xn1

1 + a2 ∗ xn2
2 + a3 ∗ x3 + b 0.9303 5.3562

3 a1 ∗ log(x1 + 1) + a2 ∗ x1 + a3 ∗ xn1
2 + a4 ∗ x3 + b 0.9291 5.4004

4 a1 ∗ x1 + a2 ∗ log(x2 + 1) + a3 ∗ x3 + a4 ∗ (xn1
1) ∗ (xn2

2) + b 0.9283 5.3818
5 a1 ∗ x1 + a2 ∗ x2 + a3 ∗ x3 + a4 ∗ (xn1

1) ∗ (xn2
2) + b 0.9278 5.4169

6 a1 ∗ log(x1 + 1)n1 + a2 ∗ x1 + a3 ∗ xn2
2 + a4 ∗ x3 + b 0.9274 5.4801

7 a1 ∗ log(x1 + 1) + a2 ∗ x1 + a3 ∗ x2 + a4 ∗ x3 + b 0.9253 5.6393
8 a1 ∗ xn1

1 + a2 ∗ log(x2 + 1)n2 + a3 ∗ x2 + a4 ∗ x3 + b 0.9253 5.3471
9 a1 ∗ log(x1 + 1) + a2 ∗ xn1

1 + a3 ∗ x2 + a4 ∗ x3 + b 0.9245 5.6528
10 a1 ∗ xn1

1 + a2 ∗ log(x2 + 1) + a3 ∗ x3 + b 0.9235 5.8177

model includes different terms. Additionally, some of the
models include interaction terms between the three variables.
We also observe that all achieve very similar results, with
low average error and high R2. This validates our approach
to auto-generate multiple model hypotheses, to cope with the
complexity of searching the vast space of non-linear models.
Moreover, it makes our methodology applicable to different
architectures without requiring extensive tuning. The low mean
absolute error is indicative of the accuracy of our model, while
the high R2 score (over >0.92 for the 10 best models) shows
that the trained models fit well to our data.

Finally, Figure 3 shows the actual and predicted results
for the most accurate performance model. Each row contains
results for the five test sets that were used. The top two rows
consider the case when the remote node is near (N1) with
interleave and remote placement policies, and the bottom two
rows consider the case when the remote node is far (N2)
with interleave and remote placement policies. We observe
that the performance model provides accurate estimations for
the various test sets with a mean absolute error of 5.31%
across the predicted points. The plots also allow us to observe
that we do not encounter any high prediction errors in cases
where performance degradation/improvement is lower than
5%, i.e., the mean absolute error (e.g. perlbench, bzip,
bodytrack, swaptions, deall and others). Finally,
there are no severe or misleading mispredictions that could
wrongly indicate, for example, performance improvement in-
stead of performance degradation. This observation validates
the quality and usefulness of our modeling approach.

V. RELATED WORK

The complexity of NUMA systems demands efficient place-
ment of application threads and memory onto the system
to harness the system performance. As a result, significant
research has been done towards modeling performance of
NUMA systems or applications running on NUMA systems.
Majo et al. [10] have developed a model to characterize the
sharing of local and remote memory bandwidth in NUMA sys-
tems. McCormick et al. [11] have proposed a memory-access
model to improve task-scheduling decisions by scheduling
tasks near the data they need. However, their model depends
only on the platform’s characteristics and do not take into
consideration the application’s characteristics. Wang et al. [15]
have proposed a model that predicts both memory bandwidth

usage and optimal core allocations for multi-threaded appli-
cations on NUMA systems. Finally, Luo et al. [9] proposed a
compositional model for selecting the best core and memory
placement scenario in NUMA systems. However, their model
targets multi-threaded applications and requires profiling infor-
mation that could affect the performance of the applications.

Machine-learning has seen many applications as an empiri-
cal method to model systems/applications performance in the
past decade. Indicatively, Barnes et al. [3] have used multi-
variate regression to extrapolate the performance of parallel
applications on higher core counts and predict their scalabil-
ity. Shudler et al. [13] have used single-variable regression
for scalability prediction, auto-generating non-linear models.
Calotoiu et al. [5] use the same technique for automatic model
generation to model the performance of complex parallel
applications. Papadopoulou et al. [12] have used multivariate
regression to predict communication time of MPI applications.
Regarding NUMA systems, Su et al. [14] have used machine-
learning techniques to predict the walltime of multi-threaded
applications on NUMA systems, for different thread place-
ments. Their approach is orthogonal to ours, predicting per-
formance in relation to thread instead of memory placement.

VI. SUMMARY AND FUTURE WORK

In this paper we described a machine-learning approach
to predict the impact on performance of core and memory
placement in NUMA systems. While our methodology and
models are the first step towards effective modeling that
could drive the decision-making logic of a resource manager,
there are still many directions for improving our work. First,
we would like to apply our methodology to multi-threaded
applications and to applications with larger working sets that
stress more the memory system. We would also like to apply
our methodology to other platforms that have more nodes
and expose asymmetry in memory access. Furthermore, we
would like to explore correlation with more performance
counters (e.g., memory bandwidth). Finally, we would like to
test our methodology with micro-benchmarks to decouple the
creation of models from the execution of particular real-world
applications.

ACKNOWLEDGMENT

This research has received funding from the European
Union’s Horizon 2020 research and innovation programme
under Grant Agreement no. 732366 (ACTiCLOUD).

300

80

100

120

140

160

180

200

220

in
te

rle
av

e
Pe

rfo
rm

an
ce

 (N
1/

N
0)

 (%
)

test 1
Real Predicted

80

100

120

140

160

180

200

220
test 2

80

100

120

140

160

180

200

220
test 3

80

100

120

140

160

180

200

220
test 4

80

100

120

140

160

180

200

220
test 5

80

100

120

140

160

180

200

220

in
te

rle
av

e
Pe

rfo
rm

an
ce

 (N
2/

N
0)

 (%
)

80

100

120

140

160

180

200

220

80

100

120

140

160

180

200

220

80

100

120

140

160

180

200

220

80

100

120

140

160

180

200

220

80
100
120
140
160
180
200
220
240
260
280
300
320
340

re
m

ot
e

Pe
rfo

rm
an

ce
 (N

1/
N

0)
 (%

)

80
100
120
140
160
180
200
220
240
260
280
300
320
340

80
100
120
140
160
180
200
220
240
260
280
300
320
340

80
100
120
140
160
180
200
220
240
260
280
300
320
340

80
100
120
140
160
180
200
220
240
260
280
300
320
340

40
0.

pe
rlb

en
ch

0
40

0.
pe

rlb
en

ch
1

40
1.

bz
ip

23
40

1.
bz

ip
25

40
3.

gc
c4

40
3.

gc
c5

40
3.

gc
c7

43
4.

ze
us

m
p

43
7.

le
sl

ie
3d

44
4.

na
m

d
44

5.
go

bm
k2

44
7.

de
al

II
45

9.
G

em
sF

D
TD

46
5.

to
nt

o
47

1.
om

ne
tp

p
47

3.
as

ta
r1

bo
dy

tra
ck

ca
nn

ea
l

fe
rre

t
rtv

ie
w

80
100
120
140
160
180
200
220
240
260
280
300
320
340

re
m

ot
e

Pe
rfo

rm
an

ce
 (N

2/
N

0)
 (%

)

40
0.

pe
rlb

en
ch

1
40

0.
pe

rlb
en

ch
2

40
1.

bz
ip

20
40

1.
bz

ip
22

40
3.

gc
c1

40
3.

gc
c8

41
6.

ga
m

es
s0

43
5.

gr
om

ac
s

43
7.

le
sl

ie
3d

44
4.

na
m

d
44

7.
de

al
II

45
3.

po
vr

ay
45

6.
hm

m
er

0
46

2.
lib

qu
an

tu
m

46
5.

to
nt

o
47

0.
lb

m
bo

dy
tra

ck
rtv

ie
w

sw
ap

tio
ns

vi
ps

80
100
120
140
160
180
200
220
240
260
280
300
320
340

40
0.

pe
rlb

en
ch

0
40

1.
bz

ip
21

40
3.

gc
c0

40
3.

gc
c5

40
3.

gc
c6

40
3.

gc
c7

41
6.

ga
m

es
s0

43
3.

m
ilc

44
5.

go
bm

k1
44

5.
go

bm
k4

44
7.

de
al

II
45

3.
po

vr
ay

45
6.

hm
m

er
0

45
8.

sj
en

g
46

2.
lib

qu
an

tu
m

47
0.

lb
m

47
1.

om
ne

tp
p

bo
dy

tra
ck

de
du

p
vi

ps

80
100
120
140
160
180
200
220
240
260
280
300
320
340

40
1.

bz
ip

21
40

1.
bz

ip
23

40
3.

gc
c0

40
3.

gc
c2

40
3.

gc
c3

40
3.

gc
c4

40
3.

gc
c5

40
3.

gc
c6

40
3.

gc
c8

41
6.

ga
m

es
s0

43
5.

gr
om

ac
s

44
7.

de
al

II
45

8.
sj

en
g

46
5.

to
nt

o
47

1.
om

ne
tp

p
48

2.
sp

hi
nx

3
bo

dy
tra

ck
ca

nn
ea

l
flu

id
an

im
at

e
fre

qm
in

e

80
100
120
140
160
180
200
220
240
260
280
300
320
340

40
0.

pe
rlb

en
ch

0
40

0.
pe

rlb
en

ch
1

40
1.

bz
ip

24
40

3.
gc

c1
40

3.
gc

c4
40

3.
gc

c6
40

3.
gc

c8
44

5.
go

bm
k0

44
5.

go
bm

k1
44

7.
de

al
II

45
0.

so
pl

ex
1

45
6.

hm
m

er
1

45
9.

G
em

sF
D

TD
47

0.
lb

m
47

3.
as

ta
r0

47
3.

as
ta

r1
fe

rre
t

flu
id

an
im

at
e

fre
qm

in
e

rtv
ie

w

80
100
120
140
160
180
200
220
240
260
280
300
320
340

Fig. 3: Actual and predicted results for the most accurate performance model. Each row contains results for the five test sets that were used.

REFERENCES

[1] “numactl - Control NUMA policy for processes or shared memory.”
https://linux.die.net/man/8/numactl, [Online].

[2] “perf: Linux profiling with performance counters.”
https://perf.wiki.kernel.org/index.php/Main Page, [Online].

[3] B. J. Barnes, B. Rountree, D. K. Lowenthal, J. Reeves, B. De Supinski,
and M. Schulz, “A regression-based approach to scalability prediction,”
in Proceedings of the 22nd annual International Conference on Super-
computing, 2008, pp. 368–377.

[4] C. Bienia, “Benchmarking modern multiprocessors,” Ph.D. dissertation,
Princeton University, January 2011.

[5] A. Calotoiu, D. Beckinsale, C. W. Earl, T. Hoefler, I. Karlin, M. Schulz,
and F. Wolf, “Fast multi-parameter performance modeling,” in 2016
IEEE International Conference on Cluster Computing (CLUSTER),
2016, pp. 172–181.

[6] G. I. Goumas, K. Nikas, E. B. Lakew, C. Kotselidis, A. Attwood, E. Elm-
roth, M. Flouris, N. Foutris, J. Goodacre, D. Grohmann, V. Karakostas,
P. Koutsourakis, M. L. Kersten, M. Luján, E. Rustad, J. Thomson,
L. Tomás, A. Vesterkjaer, J. Webber, Y. Zhang, and N. Koziris, “AC-
TiCLOUD: Enabling the Next Generation of Cloud Applications,” in
37th IEEE International Conference on Distributed Computing Systems
(ICDCS), 2017, pp. 1836–1845.

[7] J. L. Henning, “SPEC CPU2006 Benchmark Descriptions,” SIGARCH
Comput. Archit. News, vol. 34, no. 4, pp. 1–17, Sep. 2006.

[8] C. Lameter, “NUMA (Non-Uniform Memory Access): An Overview,”
Queue, vol. 11, no. 7, pp. 40:40–40:51, Jul. 2013.

[9] H. Luo, J. Brock, P. Li, C. Ding, and C. Ye, “Compositional model of
coherence and NUMA effects for optimizing thread and data placement,”
in 2016 IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS), 2016, pp. 151–152.

[10] Z. Majo and T. R. Gross, “Memory System Performance in a NUMA
Multicore Multiprocessor,” in Proceedings of the 4th Annual Interna-
tional Conference on Systems and Storage, ser. SYSTOR ’11. ACM,
2011, pp. 12:1–12:10.

[11] P. S. McCormick, R. K. Braithwaite, and W.-c. Feng, “Empirical
Memory-Access Cost Models in Multicore NUMA Architectures,” Los
Alamos National Lab. (LANL), Los Alamos, NM (United States), , 2011.

[12] N. Papadopoulou, G. I. Goumas, and N. Koziris, “A Machine-Learning
Approach for Communication Prediction of Large-Scale Applications,”
in 2015 IEEE International Conference on Cluster Computing (CLUS-
TER), 2015, pp. 120–123.

[13] S. Shudler, A. Calotoiu, T. Hoefler, A. Strube, and F. Wolf, “Exascaling
your library: Will your implementation meet your expectations?” in
Proceedings of the 29th ACM on International Conference on Super-
computing, 2015, pp. 165–175.

[14] C. Su, D. Li, D. S. Nikolopoulos, K. W. Cameron, B. R. de Supinski,
and E. A. León, “Model-based, memory-centric performance and power
optimization on NUMA multiprocessors,” in 2012 IEEE International
Symposium on Workload Characterization (IISWC), 2012, pp. 164–173.

[15] W. Wang, J. W. Davidson, and M. L. Soffa, “Predicting the memory
bandwidth and optimal core allocations for multi-threaded applications
on large-scale NUMA machines,” in 2016 IEEE International Sympo-
sium on High Performance Computer Architecture (HPCA), 2016, pp.
419–431.

301

